Second And Third Order Upwind Difference Schemes For Hyperbolic Conservation Laws PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Second And Third Order Upwind Difference Schemes For Hyperbolic Conservation Laws PDF full book. Access full book title Second And Third Order Upwind Difference Schemes For Hyperbolic Conservation Laws.

A Second Order Upwind Flux Method for Hyperbolic Conservation Laws

A Second Order Upwind Flux Method for Hyperbolic Conservation Laws
Author: B. E. McDonald
Publisher:
Total Pages: 25
Release: 1983
Genre:
ISBN:

Download A Second Order Upwind Flux Method for Hyperbolic Conservation Laws Book in PDF, ePub and Kindle

We present first- and second-order upwind schemes employing a numerically calculated characteristic speed direction and combine them into a simple monotonicity preserving hybrid scheme using the method of flux correction. The first-order scheme is constructed to maintain accuracy at flow reversal points. The hybrid scheme computes a provisional update from the first-order scheme, and then filters the second-order corrections to prevent occurrence of new extrema. We derive analytic solutions for a developing N-wave shock, and compare computed versus analytic results for two different N waves and for a third case involving linear advection of a square wave. Results are given with and without the second-order correction. The second-order results are always superior to first-order results, with the most dramatic difference occurring for the case of linear advection. The results suggest that higher order differences could be substituted in the hybrid scheme to reduce truncation error even further.


Upwind and High-Resolution Schemes

Upwind and High-Resolution Schemes
Author: M.Yousuff Hussaini
Publisher: Springer Science & Business Media
Total Pages: 587
Release: 2012-12-06
Genre: Science
ISBN: 3642605435

Download Upwind and High-Resolution Schemes Book in PDF, ePub and Kindle

One of the major achievements in computational fluid dynamics has been the development of numerical methods for simulating compressible flows, combining higher-order accuracy in smooth regions with a sharp, oscillation-free representation of embedded shocks methods and now known as "high-resolution schemes". Together with introductions from the editors written from the modern vantage point this volume collects in one place many of the most significant papers in the development of high-resolution schemes as occured at ICASE.


Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems
Author: Remi Abgrall
Publisher: Elsevier
Total Pages: 668
Release: 2016-11-17
Genre: Mathematics
ISBN: 0444637958

Download Handbook of Numerical Methods for Hyperbolic Problems Book in PDF, ePub and Kindle

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. Provides detailed, cutting-edge background explanations of existing algorithms and their analysis Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications Written by leading subject experts in each field who provide breadth and depth of content coverage


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
Total Pages: 221
Release: 2013-11-11
Genre: Science
ISBN: 3034851162

Download Numerical Methods for Conservation Laws Book in PDF, ePub and Kindle

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.


Innovative Methods for Numerical Solutions of Partial Differential Equations

Innovative Methods for Numerical Solutions of Partial Differential Equations
Author: P. L. Roe
Publisher: World Scientific
Total Pages: 418
Release: 2002
Genre: Mathematics
ISBN: 9812810811

Download Innovative Methods for Numerical Solutions of Partial Differential Equations Book in PDF, ePub and Kindle

This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry. Contents: OC A One-Sided ViewOCO: The Real Story (B van Leer); Collocated Upwind Schemes for Ideal MHD (K G Powell); The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina's Flux Splitting (R P Fedkiw et al.); A Finite Element Based Level-Set Method for Multiphase Flows (B Engquist & A-K Tornberg); The GHOST Fluid Method for Viscous Flows (R P Fedkiw & X-D Liu); Factorizable Schemes for the Equations of Fluid Flow (D Sidilkover); Evolution Galerkin Methods as Finite Difference Schemes (K W Morton); Fluctuation Distribution Schemes on Adjustable Meshes for Scalar Hyperbolic Equations (M J Baines); Superconvergent Lift Estimates Through Adjoint Error Analysis (M B Giles & N A Pierce); Somewhere between the LaxOCoWendroff and Roe Schemes for Calculating Multidimensional Compressible Flows (A Lerat et al.); Flux Schemes for Solving Nonlinear Systems of Conservation Laws (J M Ghidaglia); A LaxOCoWendroff Type Theorem for Residual Schemes (R Abgrall et al.); Kinetic Schemes for Solving SaintOCoVenant Equations on Unstructured Grids (M O Bristeau & B Perthame); Nonlinear Projection Methods for Multi-Entropies NavierOCoStokes Systems (C Berthon & F Coquel); A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows (P De Palma et al.); Some Recent Developments in Kinetic Schemes Based on Least Squares and Entropy Variables (S M Deshpande); Difference Approximation for Scalar Conservation Law. Consistency with Entropy Condition from the Viewpoint of Oleinik's E-Condition (H Aiso); Lessons Learned from the Blast Wave Computation Using Overset Moving Grids: Grid Motion Improves the Resolution (K Fujii). Readership: Researchers and graduate students in numerical and computational mathematics in engineering."


Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics

Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
Author: Charles Hirsch
Publisher: Elsevier
Total Pages: 696
Release: 2007-07-18
Genre: Science
ISBN: 0080550029

Download Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics Book in PDF, ePub and Kindle

The second edition of this book is a self-contained introduction to computational fluid dynamics (CFD). It covers the fundamentals of the subject and is ideal as a text or a comprehensive reference to CFD theory and practice. New approach takes readers seamlessly from first principles to more advanced and applied topics. Presents the essential components of a simulation system at a level suitable for those coming into contact with CFD for the first time, and is ideal for those who need a comprehensive refresher on the fundamentals of CFD. Enhanced pedagogy features chapter objectives, hands-on practice examples and end of chapter exercises. Extended coverage of finite difference, finite volume and finite element methods. New chapters include an introduction to grid properties and the use of grids in practice. Includes material on 2-D inviscid, potential and Euler flows, 2-D viscous flows and Navier-Stokes flows to enable the reader to develop basic CFD simulations. Includes best practice guidelines for applying existing commercial or shareware CFD tools.