Scalable Multi Core Architectures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Scalable Multi Core Architectures PDF full book. Access full book title Scalable Multi Core Architectures.

Scalable Multi-core Architectures

Scalable Multi-core Architectures
Author: Dimitrios Soudris
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2011-10-17
Genre: Technology & Engineering
ISBN: 1441967788

Download Scalable Multi-core Architectures Book in PDF, ePub and Kindle

As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallelization of the computation and 3D integration technologies lead to distributed memory architectures. This book describes recent research that addresses urgent challenges in many-core architectures and application mapping. It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies.


Multicore Processors and Systems

Multicore Processors and Systems
Author: Stephen W. Keckler
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2009-08-29
Genre: Computers
ISBN: 1441902635

Download Multicore Processors and Systems Book in PDF, ePub and Kindle

Multicore Processors and Systems provides a comprehensive overview of emerging multicore processors and systems. It covers technology trends affecting multicores, multicore architecture innovations, multicore software innovations, and case studies of state-of-the-art commercial multicore systems. A cross-cutting theme of the book is the challenges associated with scaling up multicore systems to hundreds of cores. The book provides an overview of significant developments in the architectures for multicore processors and systems. It includes chapters on fundamental requirements for multicore systems, including processing, memory systems, and interconnect. It also includes several case studies on commercial multicore systems that have recently been developed and deployed across multiple application domains. The architecture chapters focus on innovative multicore execution models as well as infrastructure for multicores, including memory systems and on-chip interconnections. The case studies examine multicore implementations across different application domains, including general purpose, server, media/broadband, network processing, and signal processing. Multicore Processors and Systems is the first book that focuses solely on multicore processors and systems, and in particular on the unique technology implications, architectures, and implementations. The book has contributing authors that are from both the academic and industrial communities.


Hybrid Coherence for Scalable Multicore Architectures

Hybrid Coherence for Scalable Multicore Architectures
Author: John H. Kelm
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Hybrid Coherence for Scalable Multicore Architectures Book in PDF, ePub and Kindle

This work describes a cache architecture and memory model for 1000+ core microprocessors. Our approach exploits workload characteristics and programming model assumptions to build a hybrid memory model that incorporates features from both software-managed coherence schemes and hardware cache coherence. The goal is to achieve the scalability found in compute accelerators, which support relaxed ordering of memory operations and programmer-managed coherence, while providing a programming interface that is akin to the strongly ordered cache coherent memory models found in general-purpose multicore processors today. The research presented in this dissertation supports the following thesis: To be scalable and programmable, future multicore systems require a cached, single-address space memory hierarchy. A hybrid software/hardware approach to coherence management is required to support such a memory hierarchy in 1000+ core processors and is achievable only by leveraging the characteristics of target applications and system software. We motivate a hybrid memory model and present our approach to addressing the challenges facing such a model. We discuss and evaluate a scalable 1024-core architecture, workloads that we see as targets for such an architecture, a memory model that relies on software management of coherence, and scalable hardware coherence schemes. Using these components, we develop the software and hardware support for a hybrid memory model. We demonstrate that our techniques can be used to reduce hardware design complexity, to increase software scalability, or to combine the two.


Multicore Technology

Multicore Technology
Author: Muhammad Yasir Qadri
Publisher: CRC Press
Total Pages: 492
Release: 2013-07-26
Genre: Computers
ISBN: 1439880646

Download Multicore Technology Book in PDF, ePub and Kindle

The saturation of design complexity and clock frequencies for single-core processors has resulted in the emergence of multicore architectures as an alternative design paradigm. Nowadays, multicore/multithreaded computing systems are not only a de-facto standard for high-end applications, they are also gaining popularity in the field of embedded computing. The start of the multicore era has altered the concepts relating to almost all of the areas of computer architecture design, including core design, memory management, thread scheduling, application support, inter-processor communication, debugging, and power management. This book gives readers a holistic overview of the field and guides them to further avenues of research by covering the state of the art in this area. It includes contributions from industry as well as academia.


Programming Many-Core Chips

Programming Many-Core Chips
Author: András Vajda
Publisher: Springer Science & Business Media
Total Pages: 233
Release: 2011-06-10
Genre: Technology & Engineering
ISBN: 1441997393

Download Programming Many-Core Chips Book in PDF, ePub and Kindle

This book presents new concepts, techniques and promising programming models for designing software for chips with "many" (hundreds to thousands) processor cores. Given the scale of parallelism inherent to these chips, software designers face new challenges in terms of operating systems, middleware and applications. This will serve as an invaluable, single-source reference to the state-of-the-art in programming many-core chips. Coverage includes many-core architectures, operating systems, middleware, and programming models.


Towards More Scalable Mutual Exclusion for Multicore Architectures

Towards More Scalable Mutual Exclusion for Multicore Architectures
Author: Jean-Pierre Lozi
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:

Download Towards More Scalable Mutual Exclusion for Multicore Architectures Book in PDF, ePub and Kindle

The scalability of multithreaded applications on current multicore systems is hampered by the performance of lock algorithms, due to the costs of access contention and cache misses. The main contribution presented in this thesis is a new lock algorithm, Remote Core Locking (RCL), that aims to improve the performance of critical sections in legacy applications on multicore architectures. The idea of RCL is to replace lock acquisitions by optimized remote procedure calls to a dedicated hardware thread, which is referred to as the server. RCL limits the performance collapse observed with other lock algorithms when many threads try to acquire a lock concurrently and removes the need to transfer lock-protected shared data to the hardware thread acquiring the lock because such data can typically remain in the server's cache. Other contributions presented in this thesis include a profiler that identifies the locks that are the bottlenecks in multithreaded applications and that can thus benefit from RCL, and a reengineering tool developed with Julia Lawall that transforms POSIX locks into RCL locks. Eighteen applications were used to evaluate RCL: the nine applications of the SPLASH-2 benchmark suite, the seven applications of the Phoenix 2 benchmark suite, Memcached, and Berkeley DB with a TPC-C client. Eight of these applications are unable to scale because of locks and benefit from RCL on an x86 machine with four AMD Opteron processors and 48 hardware threads. Using RCL locks, performance is improved by up to 2.5 times with respect to POSIX locks on Memcached, and up to 11.6 times with respect to Berkeley DB with the TPC-C client. On an SPARC machine with two Sun Ultrasparc T2+ processors and 128 hardware threads, three applications benefit from RCL. In particular, performance is improved by up to 1.3 times with respect to POSIX locks on Memcached, and up to 7.9 times with respect to Berkeley DB with the TPC-C client.


Architecture-aware Hard-real-time Scheduling on Multi-core Architectures

Architecture-aware Hard-real-time Scheduling on Multi-core Architectures
Author: Mayank Shekhar
Publisher:
Total Pages: 370
Release: 2014
Genre:
ISBN:

Download Architecture-aware Hard-real-time Scheduling on Multi-core Architectures Book in PDF, ePub and Kindle

The increasing dependency of man on machines have led to increase computational load on systems. The increasing computational load can be handled to some extent by scaling up processor frequencies. However, this approach has hit a frequency and power wall and the increasing awareness towards green computing discourages this solution. This leads us to use multi-core architectures. Due to the same reason, real-time systems are also migrating from single-core towards multi-core systems. While multi-core systems provide scalable high computational power, they also expose real-time systems to several challenges. Most of these challenges hamper the key property of real-time systems, i.e., predictability. In this work, we address some challenges imposed by multi-core architectures on real-time systems. We propose and evaluate several scheduling algorithms and demonstrate improved predictability and performance over existing methods. A unifying them in all our algorithms is that we explicitly consider the effects of architectural factors on the scheduling and schedulablity of real-time programs. As a case study, we use Tilera's TilePro64 platform as an example multi-core platform and implement some of our algorithms on this platform. Through this case study, we derive several useful conclusions regarding performance, predictability and practical overheads on a multi-core architecture.