Robust Tracking And Advanced Geometry For Monte Carlo Radiation Transport PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robust Tracking And Advanced Geometry For Monte Carlo Radiation Transport PDF full book. Access full book title Robust Tracking And Advanced Geometry For Monte Carlo Radiation Transport.

Monte Carlo Methods for Radiation Transport

Monte Carlo Methods for Radiation Transport
Author: Oleg N. Vassiliev
Publisher: Springer
Total Pages: 292
Release: 2016-10-17
Genre: Science
ISBN: 3319441418

Download Monte Carlo Methods for Radiation Transport Book in PDF, ePub and Kindle

This book is a guide to the use of Monte Carlo techniques in radiation transport. This topic is of great interest for medical physicists. Praised as a "gold standard" for accurate radiotherapy dose calculations, Monte Carlo has stimulated a high level of research activity that has produced thousands of papers within the past few years. The book is designed primarily to address the needs of an academically inclined medical physicist who wishes to learn the technique, as well as experienced users of standard Monte Carlo codes who wish to gain insight into the underlying mathematics of Monte Carlo algorithms. The book focuses on the fundamentals—giving full attention to and explaining the very basic concepts. It also includes advanced topics and covers recent advances such as transport of charged particles in magnetic fields and the grid-based solvers of the Boltzmann equation.


Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications
Author: Andreas Kling
Publisher: Springer Science & Business Media
Total Pages: 1200
Release: 2014-02-22
Genre: Science
ISBN: 3642182119

Download Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications Book in PDF, ePub and Kindle

This book focuses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications. Special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields.


A Monte Carlo Primer

A Monte Carlo Primer
Author: Stephen A. Dupree
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2012-09-07
Genre: Science
ISBN: 1441984917

Download A Monte Carlo Primer Book in PDF, ePub and Kindle

The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.


Methods in Monte Carlo Solution of the Radiation Transport Equation

Methods in Monte Carlo Solution of the Radiation Transport Equation
Author: Malvin H. Kalos
Publisher:
Total Pages: 64
Release: 1962
Genre: Monte Carlo method
ISBN:

Download Methods in Monte Carlo Solution of the Radiation Transport Equation Book in PDF, ePub and Kindle

A discussion is given of certain methods of importance sampling and scoring in the Monte Carlo solution of the radiation transport equation.


Weight Window Isosurface Geometries for Monte Carlo Radiation Transport Variance Reduction

Weight Window Isosurface Geometries for Monte Carlo Radiation Transport Variance Reduction
Author: Kalin Kiesling
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Weight Window Isosurface Geometries for Monte Carlo Radiation Transport Variance Reduction Book in PDF, ePub and Kindle

In order to perform accurate Monte Carlo (MC) simulations, which is a stochastic method resulting in uncertainty, variance reduction (VR) techniques are often necessary to reduce the relative error for quantities of interest. The use of weight windows (WWs) is a common VR method in which the statistical weight of particles are changed based on various parameters in the simulation. WWs are most commonly represented as a Cartesian WW mesh (CWWM) where WWs are defined across all energies on each mesh voxel. For large, geometrically complex problems, these meshes often need to be developed with fine resolution over the entire spatial domain in order to capture necessary fine detail in some regions of the geometry. This can cause the memory footprint of these meshes to be extremely large and computationally prohibitive. Furthermore, CWWMs are not necessarily efficient in their implementation with respect to when particle weight is checked and updated. This dissertation work presents a novel method for representing WWs aimed at addressing the computational limitations of CWWMs while also improving VR efficiency. In this method, the WWs are transformed into a faceted mesh geometry, known as a WW isosurface geometry (WWIG), where the surfaces are the isosurfaces derived from the WW values in a CWWM. The WWIGs can then be used during particle tracking with the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit, which allows for particle tracking on arbitrarily complex geometries. In this work, an algorithm for using WWIGs for MC VR has been implemented in DAGMC coupled with Monte Carlo N- Particle transport code (MCNP) (DAG-MCNP) 6.2. Initial verification and demonstration experiments show that the WWIG method performs accurate and comparable VR to using CWWMs. Further analysis has been done to demonstrate how changing mesh geometric features of the WWIGs affects computational performance during MC radiation transport. Depending on parameters set for generating the WWIGs and the starting CWWM, the isosurfaces of the WWIGs can vary in mesh coarseness, surface roughness, and spacing. In this work, we explore how these different geometric features of the WWIGs affect the memory footprint and computational performance during variance reduction for Monte Carlo radiation transport. In the end, we see that using WWIGs for MC VR improves WW efficiency and is comparable in performance to using CWWMs.


Monte Carlo Methods for Particle Transport

Monte Carlo Methods for Particle Transport
Author: Alireza Haghighat
Publisher:
Total Pages: 290
Release: 2020-08-10
Genre: Monte Carlo method
ISBN: 9780367188054

Download Monte Carlo Methods for Particle Transport Book in PDF, ePub and Kindle

Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author's research activities