Reinforcement Learning Of Bimanual Robot Skills PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Reinforcement Learning Of Bimanual Robot Skills PDF full book. Access full book title Reinforcement Learning Of Bimanual Robot Skills.

Reinforcement Learning of Bimanual Robot Skills

Reinforcement Learning of Bimanual Robot Skills
Author: Adrià Colomé
Publisher: Springer Nature
Total Pages: 182
Release: 2019-08-27
Genre: Technology & Engineering
ISBN: 3030263266

Download Reinforcement Learning of Bimanual Robot Skills Book in PDF, ePub and Kindle

This book tackles all the stages and mechanisms involved in the learning of manipulation tasks by bimanual robots in unstructured settings, as it can be the task of folding clothes. The first part describes how to build an integrated system, capable of properly handling the kinematics and dynamics of the robot along the learning process. It proposes practical enhancements to closed-loop inverse kinematics for redundant robots, a procedure to position the two arms to maximize workspace manipulability, and a dynamic model together with a disturbance observer to achieve compliant control and safe robot behavior. In the second part, methods for robot motion learning based on movement primitives and direct policy search algorithms are presented. To improve sampling efficiency and accelerate learning without deteriorating solution quality, techniques for dimensionality reduction, for exploiting low-performing samples, and for contextualization and adaptability to changing situations are proposed. In sum, the reader will find in this comprehensive exposition the relevant knowledge in different areas required to build a complete framework for model-free, compliant, coordinated robot motion learning.


Bimanual Robot Skills: MP Encoding, Dimensionality Reduction and Reinforcement Learning

Bimanual Robot Skills: MP Encoding, Dimensionality Reduction and Reinforcement Learning
Author: Adrià Colomé Figueras
Publisher:
Total Pages: 194
Release: 2018
Genre:
ISBN:

Download Bimanual Robot Skills: MP Encoding, Dimensionality Reduction and Reinforcement Learning Book in PDF, ePub and Kindle

In our culture, robots have been in novels and cinema for a long time, but it has been specially in the last two decades when the improvements in hardware - better computational power and components - and advances in Artificial Intelligence (AI), have allowed robots to start sharing spaces with humans. Such situations require, aside from ethical considerations, robots to be able to move with both compliance and precision, and learn at different levels, such as perception, planning, and motion, being the latter the focus of this work. The first issue addressed in this thesis is inverse kinematics for redundant robot manipulators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose to filter and limit the gains in the spectral domain, while also unifying such approach with a continuous, multipriority scheme. Such inverse kinematics method is then used to derive manipulability in the whole workspace of an antropomorphic arm, and the coordination of two arms is subsequently optimized by finding their best relative positioning. Having solved the kinematic issues, a robot learning within a human environment needs to move compliantly, with limited amount of force, in order not to harm any humans or cause any damage, while being as precise as possible. Therefore, we developed two dynamic models for the same redundant arm we had analysed kinematically: The first based on local models with Gaussian projections, and the second characterizing the most problematic term of the dynamics, namely friction. Such models allowed us to implement feed-forward controllers, where we can actively change the weights in the compliance-precision tradeoff. Moreover, we used such models to predict external forces acting on the robot, without the use of force sensors. Afterwards, we noticed that bimanual robots must coordinate their components (or limbs) and be able to adapt to new situations with ease. Over the last decade, a number of successful applications for learning robot motion tasks have been published. However, due to the complexity of a complete system including all the required elements, most of these applications involve only simple robots with a large number of high-end technology sensors, or consist of very simple and controlled tasks. Using our previous framework for kinematics and control, we relied on two types of movement primitives to encapsulate robot motion. Such movement primitives are very suitable for using reinforcement learning. In particular, we used direct policy search, which uses the motion parametrization as the policy itself. In order to improve the learning speed in real robot applications, we generalized a policy search algorithm to give some importance to samples yielding a bad result, and we paid special attention to the dimensionality of the motion parametrization. We reduced such dimensionality with linear methods, using the rewards obtained through motion repetition and execution. We tested such framework in a bimanual task performed by two antropomorphic arms, such as the folding of garments, showing how a reduced dimensionality can provide qualitative information about robot couplings and help to speed up the learning of tasks when robot motion executions are costly.


Using Symmetries in Reinforcement Learning of Bimanual Robotic Tasks

Using Symmetries in Reinforcement Learning of Bimanual Robotic Tasks
Author: Fabio Amadio
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:

Download Using Symmetries in Reinforcement Learning of Bimanual Robotic Tasks Book in PDF, ePub and Kindle

The learning of bimanual robotic tasks, i.e., tasks executed by two manipulators together, can be particularly important in the new scenarios opened by the rise of humanoid robotics, one of the most interesting trend currently in the field. The work presented wants to build a method to simplify the dimensionality of parameter space in this particular context, exploiting the presence of symmetries between the movements executed by the two arms. The aim is to develop a reduced-order representation of the bimanual motion, with the purpose of increase the speed of learning process. In chapter 1, kinematics of the used robots is studied, in order to know how to correctly command the position of the robots while executing a task. Robotic movements are then modeled using Probabilistic Movement Primitives (ProMPs), a stochastic interpretation of robot movements (details in chapter 2). The first objective is to develop a symmetrization method for those kind of policies, and this part is treated in chapter 3. This will give the chance of representing the movement of two robotic arms, with only a single ProMP (instead of two, one for each arm), from which obtain the second policy applying symmetrization. In this way the amount of parameters representing motion can be halved. The most common kind of symmetry is the one defined by a plane, but also other cases can be explored, e.g., spherical or cylindrical symmetry. If the symmetry surface is not explicitly given in the bimanual task description, it is critical to have a reliable method to estimate it in order to exploit it in the learning process. In chapter 4 it is reported a way to obtain this estimation of the parameters describing the symmetry surface from the initially demonstrated trajectories. Finally, in chapter 5 it is defined a symmetric policy representation for bimanual task, that depends only on a single ProMP and a symmetry surface. The effectiveness of this parameter reduction has been tested applying it in reinforcement learning of some tasks, in comparison to the results obtained by the standard way of proceeding, that model the bimanual task with two separated ProMPs, one for each robotic arm.


Learning Motor Skills

Learning Motor Skills
Author: Jens Kober
Publisher: Springer
Total Pages: 201
Release: 2013-11-23
Genre: Technology & Engineering
ISBN: 3319031945

Download Learning Motor Skills Book in PDF, ePub and Kindle

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor. skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.


Intelligent Robotics and Applications

Intelligent Robotics and Applications
Author: Honghai Liu
Publisher: Springer Nature
Total Pages: 801
Release: 2022-08-03
Genre: Computers
ISBN: 3031138449

Download Intelligent Robotics and Applications Book in PDF, ePub and Kindle

The 4-volume set LNAI 13455 - 13458 constitutes the proceedings of the 15th International Conference on Intelligent Robotics and Applications, ICIRA 2022, which took place in Harbin China, during August 2022. The 284 papers included in these proceedings were carefully reviewed and selected from 442 submissions. They were organized in topical sections as follows: Robotics, Mechatronics, Applications, Robotic Machining, Medical Engineering, Soft and Hybrid Robots, Human-robot Collaboration, Machine Intelligence, and Human Robot Interaction.


Collaboration in a Data-Rich World

Collaboration in a Data-Rich World
Author: Luis M. Camarinha-Matos
Publisher: Springer
Total Pages: 764
Release: 2017-09-06
Genre: Business & Economics
ISBN: 331965151X

Download Collaboration in a Data-Rich World Book in PDF, ePub and Kindle

This book constitutes the refereed proceedings of the 18th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2017, held in Vicenza, Italy, in September 2017. The 68 revised full papers were carefully reviewed and selected from 159 submissions. They provide a comprehensive overview of identified challenges and recent advances in various collaborative network (CN) domains and their applications, with a strong focus on the following areas: collaborative models, platforms and systems for data-rich worlds; manufacturing ecosystem and collaboration in Industry 4.0; big data analytics and intelligence; risk, performance, and uncertainty in collaborative data-rich systems; semantic data/service discovery, retrieval, and composition in a collaborative data-rich world; trust and sustainability analysis in collaborative networks; value creation and social impact of collaboration in data-rich worlds; technology development platforms supporting collaborative systems; collective intelligence and collaboration in advanced/emerging applications: collaborative manufacturing and factories of the future, e-health and care, food and agribusiness, and crisis/disaster management.


Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control
Author: Aude Billard
Publisher: MIT Press
Total Pages: 425
Release: 2022-02-01
Genre: Technology & Engineering
ISBN: 0262046164

Download Learning for Adaptive and Reactive Robot Control Book in PDF, ePub and Kindle

Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.


Experimental Robotics

Experimental Robotics
Author: Marcelo H. Ang Jr
Publisher: Springer Nature
Total Pages: 626
Release:
Genre:
ISBN: 3031635965

Download Experimental Robotics Book in PDF, ePub and Kindle


Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation
Author: Qiang Li
Publisher: Academic Press
Total Pages: 374
Release: 2022-04-02
Genre: Computers
ISBN: 0323904173

Download Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation Book in PDF, ePub and Kindle

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects’ property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human’s dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches