Red Phosphors For W Led Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Red Phosphors For W Led Applications PDF full book. Access full book title Red Phosphors For W Led Applications.

Red phosphors for W-LED applications

Red phosphors for W-LED applications
Author: John Peter
Publisher: GRIN Verlag
Total Pages: 22
Release: 2015-09-09
Genre: Science
ISBN: 3668043043

Download Red phosphors for W-LED applications Book in PDF, ePub and Kindle

Project Report from the year 2015 in the subject Physics - Optics, ST Anne's College Of Engineering And Technology (St. Anne’s College of Engineering and Technology, Panruti, Tamilnadu, India), language: English, abstract: Trivalent rare-earth-ion-activated molybdate based phosphors have attracted great attention for solid-state lighting applications by virtue of their long lifetimes, and efficient luminescence property. The rare-earth ions are represented by a partly filled 4f shell that is completely shielded by 5s2 and 5p6 orbitals. Therefore, emission transitions provide sharp intense lines in the optical spectra [1, 2]. The use of rare-earth element-based phosphor, based on ‘‘line-type’’ f–f transitions, can narrow the emissions to the visible range, resulting in high efficiency and a high-lumen equivalence. In recent years, a flourishing care is concentrated on Li3Ba2Gd3-x(MoO4)8 host matrix for luminescent ions in the interest of their excellent chemical and thermal stability and favourable luminescence characteristics compared to the sulfide- and nitride-based materials. Moreover, these are environmentally friendly as no toxic gases like sulphide are given out. Li3Ba2Gd3-x(MoO4)8 occur in monoclinic crystal system with space group C2/c in a disordered structure [3]. For this research paper, a series of Li3Ba2Gd3–xPrx (MoO4)8 (x = 0.01, 0.03, 0.05, 0.07and 0.09 mol) and Li3Ba2Gd3–xSmx (MoO4)8 (x = 0.02, 0.04, 0.06, 0.08 and 0.10 mol) red phosphors were synthesized by conventional solid state reaction method.


Nitride Phosphors and Solid-State Lighting

Nitride Phosphors and Solid-State Lighting
Author: Rong-Jun Xie
Publisher: CRC Press
Total Pages: 332
Release: 2016-04-19
Genre: Science
ISBN: 1439830126

Download Nitride Phosphors and Solid-State Lighting Book in PDF, ePub and Kindle

Nitride Phosphors and Solid-State Lighting provides an in-depth introduction to the crystal chemistry, synthesis, luminescence, and applications of phosphor materials for solid-state lighting, mainly focusing on new nitride phosphors. Drawing on their extensive experimental work, the authors offer a multidisciplinary study of phosphor materials tha


Design and Synthesis of Phosphors to Improve Efficiency for Solid State Lighting Application

Design and Synthesis of Phosphors to Improve Efficiency for Solid State Lighting Application
Author: Jungmin Ha
Publisher:
Total Pages: 206
Release: 2019
Genre:
ISBN:

Download Design and Synthesis of Phosphors to Improve Efficiency for Solid State Lighting Application Book in PDF, ePub and Kindle

White-emitting light sources based on light-emitting diodes (white-emitting LEDs) are considered to be the next generation in lighting. A common approach to create a white-emitting LED is to combine a blue-emitting InGaN LED with a yellow-emitting phosphor, but it has a low color rendering index (CRI) value due to the rack of red emission. An alternative approach is to combine a near UV-LED (nUV-LED) with blue-, green-, and red-emitting phosphors. However, the development of phosphors for the white-emitting LEDs is still challenging due to the numerous factors that influence on the luminescent properties. In this research, five approaches have been investigated to design and synthesize phosphors for solid state lighting: First, the Debye temperature (DT) was used as a descriptor for phosphors with high quantum efficiency (QE) (> 80%). Compositions with DT > 500K were considered. CaMgSi2O6:Eu2+ and Ca7Mg(SiO4)4:Eu2+ were synthesized through a co-precipitation and a sol-gel reactions, respectively, due to the high DT. However, a correlation between high DT and high QE was not found. Second, a flux (NH4F, NH4Cl, or H3BO3) was introduced during co-precipitation synthesis of CaMgSi2O6:Eu2+ to increase the QE. The flux affected both the crystallite size and the QE of the submicron sized phosphors. It was found that the QE increased 3X compared to no flux. Third, newly identified phosphors, green-emitting Sr2LiAlO4:Eu2+ and blue-emitting Sr2LiAlO4:Ce3+ were discovered by data mining unexplored chemistries for potentially high QE. The new, Sr2LiAlO4:Eu2+ and Sr2LiAlO4:Ce3+ were successfully predicted and synthesized. Fourth, color tunable single phase phosphors were developed using the Eu2+ and Ce3+ co-activated Sr2LiAlO4 for improvement of QE. The QE increased by 40% with Eu2+ and Ce3+ co-activation compared to the singly activated phosphors. Fifth, the synthesis of Na2SiF6 was demonstrated through a green synthetic method without toxic HF that is typically used for fluorides synthesis. The red-emitting phosphor, Na2SiF6:Mn4+ was prepared in a low concentration HF solution using the synthesized Na2SiF6 as a host. This study provides strategies to design and synthesize phosphors with improved quantum efficiency and thermal stability for white-emitting near-UV LEDs for potential applications in solid state lighting.


Radiation Dosimetry Phosphors

Radiation Dosimetry Phosphors
Author: Sanjay J. Dhoble
Publisher: Woodhead Publishing
Total Pages: 546
Release: 2022-05-26
Genre: Technology & Engineering
ISBN: 0323854729

Download Radiation Dosimetry Phosphors Book in PDF, ePub and Kindle

Radiation Dosimetry Phosphors provides an overview of the synthesis, properties and applications of materials used for radiation dosimetry and reviews the most appropriate phosphor materials for each radiation dosimetry technique. The book describes the available phosphors used commercially for their applications in the medical field for dose measurements. Although radiation dosimetry phosphors are commercially available, continuous efforts have been made by the worldwide research community to develop new materials or improve already existing materials used in different areas with low or high levels of radiation. Moreover, researchers are still working on developing dosimetric phosphors for OSL, ML, LL and RPL dosimetry. This book provides an overall view of the phosphors available, low cost synthesis methods, mechanisms involved, emerging trends and new challenges for the development of emerging materials for radiation dosimetry. It is suitable for those working in academia and R&D laboratories in the discipline of materials science and engineering, along with practitioners working in radiation and dosimetry. Provides the fundamental concepts, historical context and review of current phosphors available for radiation dosimetry Reviews low-cost material methods to synthesize and characterize rare earth doped inorganic phosphors for different kinds of radiation dosimetry techniques Discusses key barriers and potential solutions for enabling commercial realization phosphors for radiation dosimetry applications


Phosphor Handbook

Phosphor Handbook
Author: Ru-Shi Liu
Publisher: CRC Press
Total Pages: 585
Release: 2022-01-31
Genre: Technology & Engineering
ISBN: 1000513513

Download Phosphor Handbook Book in PDF, ePub and Kindle

A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Experimental Methods for Phosphor Evaluation and Characterization’ addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies


Luminescent Materials

Luminescent Materials
Author: G. Blasse
Publisher: Springer Science & Business Media
Total Pages: 242
Release: 2012-12-06
Genre: Science
ISBN: 3642790178

Download Luminescent Materials Book in PDF, ePub and Kindle

Everyone starting work in this field is faced with the lack of basic books. Here, two renowned researchers introduce the reader to luminescence and its applications, describing the principles of the luminescence processes in a clear way and dealing not only with physics, but also with the chemistry of systems. Particular attention is paid to materials such as lamp phosphors, cathode-ray and X-ray phosphors, scintillators and many other applications.


Efficient Preparations of Fluorine Compounds

Efficient Preparations of Fluorine Compounds
Author: Herbert W. Roesky
Publisher: John Wiley & Sons
Total Pages: 490
Release: 2012-10-11
Genre: Science
ISBN: 1118409442

Download Efficient Preparations of Fluorine Compounds Book in PDF, ePub and Kindle

The definitive guide to creating fluorine-based compounds—and the materials of tomorrow Discovered as an element by the French chemist Henri Moissan in 1886, through electrolysis of potassium fluoride in anhydrous hydrogen fluoride—"le fluor," or fluorine, began its chemical history as a substance both elusive and dangerous. With a slight pale yellow hue, fluorine is at room temperature a poisonous diatomic gas. Resembling a spirit from a chemical netherworld, fluorine is highly reactive, difficult to handle, yet very versatile as a reagent—with the power to form compounds with almost any other element. Comprising 20% of pharmaceutical products and 30% of agrochemical compounds, as well as playing a key role in electric cars, electronic devices, and space technology, compounds containing fluorine have grown in importance across the globe. Learning how to safely handle fluorine in the preparation of innovative new materials—with valuable new properties—is of critical importance to chemists today. Bringing together the research and methods of leading scientists in the fluorine field, Efficient Preparations of Fluorine Compounds is the definitive manual to creating, and understanding the reaction mechanisms integral to a wide variety of fluorine compounds. With sixty-eight contributed chapters, the book's extensive coverage includes: Preparation of Elemental Fluorine Synthesis Methods for Exotic Inorganic Fluorides with Varied Applications Introduction of Fluorine into Compounds via Electrophilic and Nucleophilic Reactions Direct Fluorination of Organic Compounds with Elemental Fluorine Efficient Preparations of Bioorganic Fluorine Compounds Asymmetric Fluorocyclization Reactions Preparations of Rare Earth Fluorosulfides and Oxyfluorosulfides The book offers methods and results that can be reproduced by students involved in advanced studies, as well as practicing chemists, pharmaceutical scientists, biologists, and environmental researchers. The only chemical resource of its kind, Efficient Preparations of Fluorine Compounds—from its first experiment to its last—is a unique window into the centuries old science of fluorine and the limitless universe of fluorine-based compounds.


Light Emitting Diodes for Agriculture

Light Emitting Diodes for Agriculture
Author: S Dutta Gupta
Publisher: Springer
Total Pages: 345
Release: 2017-10-25
Genre: Science
ISBN: 9811058075

Download Light Emitting Diodes for Agriculture Book in PDF, ePub and Kindle

This book presents a comprehensive treatise on the advances in the use of light-emitting diodes (LEDs) for sustainable crop production and describes the latest photomorphogenesis research findings. It introduces readers to the fundamentals and design features of LEDs applicable for plant growth and development and illustrates their advantages over the traditional lighting systems, including cost analyses. Further, it discusses a wide range of applications covering diverse areas of plant sciences relevant to controlled environment agriculture and in vitro plant morphogenesis. The chapters have been written by a team of pioneering international experts, who have made significant contributions to this emerging interdisciplinary field. The book will serve a valuable resource for graduate students, instructors, and researchers in the fields of horticulture, agricultural biotechnology, cell and developmental biology, and precision agriculture. It will also serve well professionals engaged in greenhouse and vertical farming.


Luminescent Materials and Applications

Luminescent Materials and Applications
Author: Adrian Kitai
Publisher: John Wiley & Sons
Total Pages: 292
Release: 2008-04-30
Genre: Technology & Engineering
ISBN: 9780470985670

Download Luminescent Materials and Applications Book in PDF, ePub and Kindle

Luminescence, for example, as fluorescence, bioluminescence, and phosphorescence, can result from chemical changes, electrical energy, subatomic motions, reactions in crystals, or stimulation of an atomic system. This subject continues to have a major technological role for humankind in the form of applications such as organic and inorganic light emitters for flat panel and flexible displays such as plasma displays, LCD displays, and OLED displays. Luminescent Materials and Applications describes a wide range of materials and applications that are of current interest including organic light emitting materials and devices, inorganic light emitting diode materials and devices, down-conversion materials, nanomaterials, and powder and thin-film electroluminescent phosphor materials and devices. In addition, both the physics and the materials aspects of the field of solid-state luminescence are presented. Thus, the book may be used as a reference to gain an understanding of various types and mechanisms of luminescence and of the implementation of luminescence into practical devices. The book is aimed at postgraduate students (physicists, electrical engineers, chemical engineers, materials scientists, and engineers) and researchers in industry, for example, at lighting and display companies and academia involved in studying conduction in solids and electronic materials. It will also provide an excellent starting point for all scientists interested in luminescent materials. Finally it is hoped that this book will not only educate, but also stimulate further progress in this rapidly evolving field.


Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting
Author:
Publisher:
Total Pages:
Release: 2007
Genre:
ISBN:

Download Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting Book in PDF, ePub and Kindle

The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y3Al5O12:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.