Recent Results For Hadron Structure From Lattice Qcd PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Recent Results For Hadron Structure From Lattice Qcd PDF full book. Access full book title Recent Results For Hadron Structure From Lattice Qcd.

Formal Developments for Lattice QCD with Applications to Hadronic Systems

Formal Developments for Lattice QCD with Applications to Hadronic Systems
Author: Zohreh Davoudi
Publisher:
Total Pages: 245
Release: 2014
Genre:
ISBN:

Download Formal Developments for Lattice QCD with Applications to Hadronic Systems Book in PDF, ePub and Kindle

In order to make reliable predictions with controlled uncertainties for a wide range of nuclear phenomena, a theoretical bottom-up approach, by which hadrons emerge from the underlying theory of strong interactions, quantum chromodynamics (QCD), is desired. The strongly interacting quarks and gluons at low energies are responsible for all the dynamics of nucleons and their clusters, the nuclei. The theoretical framework and the combination of analytical and numerical tools used to carry out a rigorous non-perturbative study of these systems from QCD is called lattice QCD. The result of a lattice QCD calculation corresponds to that of nature only in the limit when the volume of the spacetime is taken to infinity and the spacing between discretized points on the lattice is taken to zero. A better understanding of these discretization and volume effects, not only provides the connection to the infinite-volume continuum observables, but also leads to optimized calculations that can be performed with available computational resources. This thesis includes various formal developments in this direction, along with proposals for novel improvements, to be used in the upcoming LQCD studies of nuclear and hadronic systems. As the space(time) is discretized on a (hyper)cubic lattice in (most of) lattice QCD calculations, the lattice correlation functions are not fully rotationally invariant. This is known to lead to mixing between operators (those interpolating the states or inserting external currents) of higher dimensions with those of lower dimensions where the coefficients of latter diverge with powers of inverse lattice spacing, a, as the continuum limit is approached. This issue has long posed computational challenges in lattice spectroscopy of higher spin states, as well as in the lattice extractions of higher moments of hadron structure functions. We have shown, through analytical perturbative investigations of field theories, including QCD, on the lattice that a novel choice of operators, smeared over several lattice sites and deduced from a continuum angular momentum, has a smooth continuum limit. The scaling of the lower dimensional operators is proven to be no worse than a squared, explaining the success of recent numerical studies of excited state spectroscopy of hadrons with similar choices of operators. These results are presented in chapter 2 of this thesis. Due to Euclidean nature of lattice correlation function, the physical scattering parameters must be obtained via an analytical continuation to Minkowski spacetime. However, this continuation is practically impossible in the infinite-volume limit of lattice correlation function except at the kinematic thresholds. A formalism due to Luscher overcomes this issue by making the connection between the finite-volume spectrum of two interacting particles and their infinite-volume scattering phase shifts. We have extended the Luscher methodology, using an effective field theory approach, to the two-nucleon systems with arbitrary spin, parity and total momentum (in the limit of exact isospin symmetry) and have studied its application to the deuteron system, the lightest bound states of the nucleons, by careful analysis of the finite-volume symmetries. A proposal is presented that enables future precision lattice QCD extraction of the small D/S ratio of the deuteron that is known to be due to the action of non-central forces. By investigating another scenario, we show how significant volume improvement can be achieved in the masses of nucleons and in the binding energy of the deuteron with certain choices of boundary conditions in a lattice QCD calculation of these quantities. These results are discussed in chapters 3, 4 and 5. In order to account for electromagnetic effects in hadronic systems, lattice QCD calculations have started to include quantum electrodynamic (QED). These effects are particularly interesting in studies of mass splittings between charged and neutral members of isospin multiplets, e.g. neutral and charged pions. Due to the infinite range of QED interactions large volume effects plaque these studies. Using a non-relativistic effective theory for electromagnetic interactions of hadrons, we analytically calculate, and numerically estimate, the first few finite-volume corrections (up to 1 over L to the 4th power where L is the spatial extent of the volume) to the masses of hadrons and nuclei at leading order in the QED coupling constant, but to all orders in the short-distance strong interaction effects. These results are presented in chapter 6.


Hadron Physics

Hadron Physics
Author: I.J. Douglas MacGregor
Publisher: CRC Press
Total Pages: 474
Release: 2006-07-07
Genre: Science
ISBN: 1482286149

Download Hadron Physics Book in PDF, ePub and Kindle

Straddling the traditional disciplines of nuclear and particle physics, hadron physics is a vital and extremely active research area, as evidenced by a 2004 Nobel prize and new research facilities, such as that scheduled to open at CERN. Scientifically it is of vital importance in extrapolating our knowledge of quark-gluon physics at the sub-nucleo


PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18-22, 2002, BROOKHAVEN NATIONAL LABORATORY.

PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18-22, 2002, BROOKHAVEN NATIONAL LABORATORY.
Author:
Publisher:
Total Pages: 204
Release: 2002
Genre:
ISBN:

Download PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18-22, 2002, BROOKHAVEN NATIONAL LABORATORY. Book in PDF, ePub and Kindle

The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.


Studies in Hadron Structure Using Lattice QCD with Quark Masses that Almost Reach the Physical Point

Studies in Hadron Structure Using Lattice QCD with Quark Masses that Almost Reach the Physical Point
Author: Jeremy Russell Green
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Studies in Hadron Structure Using Lattice QCD with Quark Masses that Almost Reach the Physical Point Book in PDF, ePub and Kindle

Lattice QCD allows us to study the structure of hadrons from first-principles calculations of quantum chromodynamics. We present calculations that shed light on the behavior of quarks inside hadrons in both qualitative and quantitative ways. The first is a study of diquarks. We bind two quarks in a baryon with a static quark and compute the simultaneous two-quark density, including corrections for periodic boundary conditions. Defining a correlation function to isolate the intrinsic correlations of the diquark, we find that away from the immediate vicinity of the static quark, the diquark has a consistent shape, with much stronger correlations seen in the scalar diquark than in the axial-vector diquark. We present results at pion masses 293 and 940 MeV and discuss the dependence on the pion mass. The second set of calculations is a more quantitative study that covers a wide range of (mainly isovector) nucleon observables, including the Dirac and Pauli radii, the magnetic moment, the axial charge, and the average quark momentum fraction. Two major advances over previous calculations are the use of a near-physical pion mass, which nearly eliminates the uncertainty associated with extrapolation to the physical point, and the control over systematic errors caused by excited states, which is a significant focus of this thesis. Using pion masses as low as 149 MeV and spatial box sizes as large as 5.6 fm, we show the importance of good control over excited states for obtaining successful postdictions -- which we achieve for several quantities -- and we identify a remaining source of systematic error that is likely responsible for disagreement with experiment in the axial sector. We then use this understanding of systematics to make predictions for observables that have not been measured experimentally.


Lepton Scattering, Hadrons And Qcd, Procs Of The Workshop

Lepton Scattering, Hadrons And Qcd, Procs Of The Workshop
Author: W Melnitchouk
Publisher: World Scientific
Total Pages: 345
Release: 2001-10-19
Genre: Science
ISBN: 9814490105

Download Lepton Scattering, Hadrons And Qcd, Procs Of The Workshop Book in PDF, ePub and Kindle

This volume is centered on recent developments in the exploration of hadronic structure through lepton scattering, in the description of hadron physics directly from lattice QCD and non-perturbative QCD models, and in efforts to strengthen the links between these activities. Specific topics that are covered include: parton distribution functions, polarized structure functions, generalized structure functions, nuclear effects, quark-hadron duality, electromagnetic form factors, structure functions and hadron properties from lattice QCD, and QCD models based on the Dyson-Schwinger equations.


Understanding Hadron Structure from Lattice QCD in the SCIDAC Era

Understanding Hadron Structure from Lattice QCD in the SCIDAC Era
Author: Robert Edwards
Publisher:
Total Pages: 10
Release: 2005
Genre:
ISBN:

Download Understanding Hadron Structure from Lattice QCD in the SCIDAC Era Book in PDF, ePub and Kindle

The structure of neutrons, protons, and other strongly interacting particles in terms of their quark and gluon constituents can be calculated from first principles by solving QCD on a discrete space-time lattice. With the advent of SciDAC software and prototype clusters and of DOE supported dedicated lattice QCD computers, it is now possible to calculate physical observables using full QCD in the regime of large lattice volumes and light quark masses that can be compared with experiment. This talk will describe selected examples, including the nucleon axial charge, structure functions, electromagnetic form factors, the origin of the nucleon spin, the transverse structure of the nucleon, and the nucleon to Delta transition form factor.