Rate Deterioration Investigation Of Bridge Decks Based On Diffusion Fracture Mechanics Numerical Study PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rate Deterioration Investigation Of Bridge Decks Based On Diffusion Fracture Mechanics Numerical Study PDF full book. Access full book title Rate Deterioration Investigation Of Bridge Decks Based On Diffusion Fracture Mechanics Numerical Study.

Book of Abstracts

Book of Abstracts
Author:
Publisher:
Total Pages: 1022
Release: 1997
Genre: Materials
ISBN:

Download Book of Abstracts Book in PDF, ePub and Kindle


Aging, Shaking, and Cracking of Infrastructures

Aging, Shaking, and Cracking of Infrastructures
Author: Victor E. Saouma
Publisher: Springer Nature
Total Pages: 1153
Release: 2021-04-13
Genre: Science
ISBN: 3030574342

Download Aging, Shaking, and Cracking of Infrastructures Book in PDF, ePub and Kindle

This self-contained book focuses on the safety assessment of existing structures subjected to multi-hazard scenarios through advanced numerical methods. Whereas the focus is on concrete dams and nuclear containment structures, the presented methodologies can also be applied to other large-scale ones. The authors explains how aging and shaking ultimately lead to cracking, and how these complexities are compounded by their random nature. Nonlinear (static and transient) finite element analysis is hence integrated with both earthquake engineering and probabilistic methods to ultimately derive capacity or fragility curves through a rigorous safety assessment. Expanding its focus beyond design aspects or the state of the practice (i.e., codes), this book is composed of seven sections: Fundamentals: theoretical coverage of solid mechnics, plasticity, fracture mechanics, creep, seismology, dynamic analysis, probability and statistics Damage: that can affect concrete structures, such as cracking of concrete, AAR, chloride ingress, and rebar corrosion, Finite Element: formulation for both linear and nonlinear analysis including stress, heat and fracture mechanics, Engineering Models: for soil/fluid-structure interaction, uncertainty quantification, probablilistic and random finite element analysis, machine learning, performance based earthquake engineering, ground motion intensity measures, seismic hazard analysis, capacity/fragility functions and damage indeces, Applications to dams through potential failure mode analyses, risk-informed decision making, deterministic and probabilistic examples, Applications to nuclear structures through modeling issues, aging management programs, critical review of some analyses, Other applications and case studies: massive RC structures and bridges, detailed assessment of a nuclear containment structure evaluation for license renewal. This book should inspire students, professionals and most importantly regulators to rigorously apply the most up to date scientific methods in the safety assessment of large concrete structures.


Bridge Deck Deterioration Study

Bridge Deck Deterioration Study
Author: Robert C. Mulvey
Publisher:
Total Pages: 114
Release: 1967
Genre: Concrete
ISBN:

Download Bridge Deck Deterioration Study Book in PDF, ePub and Kindle


Development and Validation of Deterioration Models for Concrete Bridge Decks

Development and Validation of Deterioration Models for Concrete Bridge Decks
Author: Nan Hu
Publisher:
Total Pages: 131
Release: 2013
Genre: Concrete bridges
ISBN:

Download Development and Validation of Deterioration Models for Concrete Bridge Decks Book in PDF, ePub and Kindle

This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the chloride-induced corrosion of the RC deck was developed. The methodology is a two-level strategy: a three-phase corrosion process was modeled at a local (unit cell) level to predict the time of surface cracking while a Monte Carlo simulation (MCS) approach was implemented on a representative number of cells to predict global (bridge deck) level degradation by estimating cumulative damage of a complete deck. The predicted damage severity and extent over the deck domain was mapped to the structural condition rating scale prescribed by the National Bridge Inventory (NBI). The influence of multiple effects was investigated by implementing a carbonation induced corrosion deterministic model. By utilizing realistic and site-specific model inputs, the statistics-based framework is capable of estimating the service states of RC decks for comparison with field data at the project level. Predicted results showed that different surface cracking time can be identified by the local deterministic model due to the variation of material and environmental properties based on probability distributions. Bridges from different regions in Michigan were used to validate the prediction model and the results show a good match between observed and predicted bridge condition ratings. A parametric study was carried out to calibrate the influence of key material properties and environmental parameters on service life prediction and facilitate use of the model. A computer program with a user-friendly interface was developed for degradation modeling due to chloride induced corrosion.


ACI Materials Journal

ACI Materials Journal
Author:
Publisher:
Total Pages: 776
Release: 2000
Genre: Concrete
ISBN:

Download ACI Materials Journal Book in PDF, ePub and Kindle


Ground Penetrating Radar-based Deterioration Assessment of Bridge Decks

Ground Penetrating Radar-based Deterioration Assessment of Bridge Decks
Author: Ahmad Shami
Publisher:
Total Pages: 138
Release: 2015
Genre:
ISBN:

Download Ground Penetrating Radar-based Deterioration Assessment of Bridge Decks Book in PDF, ePub and Kindle

The ASCE report card 2013 rated bridges at a grade of C+, implying their condition is moderate and require immediate attention. Moreover, the Federal Highway Administration reported that it is required to invest more than $20.5 billion each year to eliminate the bridge deficient backlog by 2028. In Canada 2012, more than 50% of bridges fall under fair, poor, and very poor categories, where more than $90 billion are required to replace these bridges. Therefore, government agencies should have an accurate way to inspect and assess the corrosiveness of the bridges under their management. Numerical Amplitude method is one of the most common used methods to interpret Ground Penetrating Radar (GPR) outputs, yet it does not have a fixed and informative numerical scale that is capable of accurately interpreting the condition of bridge decks. To overcome such problem, the present research aims at developing a numerical GPR-based scale with three thresholds and build deterioration models to assess the corrosiveness of bridge decks. Data, for more than 60 different bridge decks, were collected from previous research works and from surveys of bridge decks using a ground-coupled antenna with the frequency of 1.5 GHz. The amplitude values of top reinforcing rebars of each bridge deck were classified into four categories using k-means clustering technique. Statistical analysis was performed on the collected data to check the best-fit probability distribution and to choose the most appropriate parameters that affect thresholds of different categories of corrosion and deterioration. Monte-Carlo simulation technique was used to validate the value of these thresholds. Moreover, a sensitivity analysis was performed to realize the effect of changing the thresholds on the areas of corrosion. The final result of this research is a four-category GPR scale with numerical thresholds that can assess the corrosiveness of bridge decks. The developed scale has been validated using a case study on a newly constructed bridge deck and also by comparing maps created using the developed scale and other methods. The comparison shows sound and promising results that advance the state of the art of GPR output interpretation and analysis. In addition, deterioration models and curves have been developed using Weibull Distribution based on GPR outputs and corrosion areas. The developed new GPR scale and deterioration models will help the decision makers to assess accurately and objectively the corrosiveness of bridge decks. Hence, they will be able to take the right intervention decision for managing these decks.


Advanced Composites in Bridge Construction and Repair

Advanced Composites in Bridge Construction and Repair
Author: Yail Jimmy Kim
Publisher: Elsevier
Total Pages: 367
Release: 2014-05-16
Genre: Technology & Engineering
ISBN: 0857097016

Download Advanced Composites in Bridge Construction and Repair Book in PDF, ePub and Kindle

Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel. After an introductory overview and an assessment of the characteristics of bonds between composites and quasi-brittle structures, Advanced Composites in Bridge Construction and Repair reviews the use of advanced composites in the design and construction of bridges, including damage identification and the use of large rupture strain fiber-reinforced polymer (FRP) composites. The second part of the book presents key applications of FRP composites in bridge construction and repair, including the use of all-composite superstructures for accelerated bridge construction, engineered cementitious composites for bridge decks, carbon fiber-reinforced polymer composites for cable-stayed bridges and for repair of deteriorated bridge substructures, and finally the use of FRP composites in the sustainable replacement of ageing bridge superstructures. Advanced Composites in Bridge Construction and Repair is a technical guide for engineering professionals requiring an understanding of the use of composite materials in bridge construction. Reviews key applications of fiber-reinforced polymer (FRP) composites in bridge construction and repair Summarizes key recent research in the suitability of advanced composite materials for bridge structures as an alternative to conventional construction materials