Rainfall Induced Slope Failures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rainfall Induced Slope Failures PDF full book. Access full book title Rainfall Induced Slope Failures.

Rainfall-Induced Soil Slope Failure

Rainfall-Induced Soil Slope Failure
Author: Lulu Zhang
Publisher: CRC Press
Total Pages: 374
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1498752861

Download Rainfall-Induced Soil Slope Failure Book in PDF, ePub and Kindle

Rainfall-induced landslides are common around the world. With global climate change, their frequency is increasing and the consequences are becoming greater. Previous studies assess them mostly from the perspective of a single discipline—correlating landslides with rainstorms, geomorphology and hydrology in order to establish a threshold prediction value for rainfall-induced landslides; analyzing the slope’s stability using a geomechanical approach; or assessing the risk from field records. Rainfall Induced Soil Slope Failure: Stability Analysis and Probabilistic Assessment integrates probabilistic approaches with the geotechnical modeling of slope failures under rainfall conditions with unsaturated soil. It covers theoretical models of rainfall infiltration and stability analysis, reliability analysis based on coupled hydro-mechanical modelling, stability of slopes with cracks, gravels and spatial heterogenous soils, and probabilistic model calibration based on measurement. It focuses on the uncertainties involved with rainfall-induced landslides and presents state-of-the art techniques and methods which characterize the uncertainties and quantify the probabilities and risk of rainfall-induced landslide hazards. Additionally, the authors cover: The failure mechanisms of rainfall-induced slope failure Commonly used infiltration and stability methods The infiltration and stability of natural soil slopes with cracks and colluvium materials Stability evaluation methods based on probabilistic approaches The effect of spatial variability on unsaturated soil slopes and more


Rainfall-induced Slope Failures

Rainfall-induced Slope Failures
Author:
Publisher:
Total Pages: 86
Release: 2000
Genre: Soil erosion
ISBN: 9789810429287

Download Rainfall-induced Slope Failures Book in PDF, ePub and Kindle


Rainfall-induced Slope Failure

Rainfall-induced Slope Failure
Author: Md Aminul Islam (Ph.D.)
Publisher:
Total Pages: 306
Release: 2022
Genre: Highway engineering
ISBN:

Download Rainfall-induced Slope Failure Book in PDF, ePub and Kindle

Globally, slope failures cause substantial death tolls and economic loss. Embankments constructed on high plasticity clay are vulnerable to cyclic swelling and shrinkage when subjected to climate. Thus, over time, soil softens and reduces effective shear strength, and shrinkage cracks on slopes can act as pathways for rainfall infiltration, which increases pore water pressure and lowers the shear strength below critical levels, resulting in slope failure. This study aims to develop early warning criteria for rainfall-induced slope failure. Study areas were Tarrant, Dallas, Johnson, and Ellis, where soil types and a humid subtropical climate result in frequent slope failures. The field study was conducted on a 260 ft section of a highway slope (3H:1V) located over US 287 near Midlothian, TX. The test slope sections were instrumented using moisture sensors, temperature sensors, water potential sensors, and a rain gauge. According to the geotechnical investigation, there are two distinct soil strata: top 22 feet high plasticity clay (CH), followed by Eagle Ford Shale. Hydraulic conductivity and shear strength of soils fluctuated seasonally. Field tests using the Guelph Permeameter and Mini-Disk Infiltrometer showed 100 times higher permeability at the surface than at two feet below ground due to loosen and porous soil at the surface. As measured by Dynamic Cone Penetration (DPC) tests, soil shear strength was higher in the dry season and lower in the wet season. According to field instrumentation, soil moisture content and soil matric suction change with depth throughout the year: surface soil experiences more changes than deeper soils. Water content fluctuates most at the top sensors (10%) than at the deeper levels (3%). During the dry season, soil matric suction increased, but decreased after each rainfall. A slope failure inventory map for the DFW area was developed based on previous literature, thesis, and Google Earth analyses. Seventy percent of failure events were observed on highways built in high plasticity clay soils in Tarrant and Dallas counties, where the Eagle Ford Shale predominates. A susceptibility map was developed for the study area based on the slope failure inventory, geology, and topography data. Based on the frequency ratio (FR) method, slope, soil, elevation, aspect, curvature, profile curvature, plan curvature, normalized vegetation index, and soil moisture index were weighted. According to the map, there are five levels of susceptibility: very low, low, moderate, high, and very high. The slope failure susceptibility model demonstrated a success rate of 71.54% and a prediction rate of 70.12%. Slope failures tend to increase with increased rainfall. Empirical thresholds such as Intensity-duration (ID), Event rainfall-duration (ED), Event rainfall-intensity (EI), daily rainfall-antecedent rainfall (3, 5, 10, and 30 days) were established. The numerical study (seepage and slope stability) demonstrated that rainfall duration has a significant impact on rainfall-induced slope failure. A high-intensity rainfall can lead to a drastic drop in pore-water pressure in a short period of time, resulting in slope failure much faster than a low-intensity rain. The slope becomes more vulnerable to failure if it cracks and faces a higher rainfall intensity. Based on a numerical simulation of a field slope section, site-specific thresholds of rainfall intensity and duration were developed and can be used to prevent slope failure caused by rainfall. The numerical model successfully replicated the failed field section at the edge of the study area which failed in 2020. Empirical thresholds predicted the failure as well. Therefore, the established thresholds may be a useful tool for regional slope failure warning systems to predict rainfall-induced slope failure.


Unsaturated Soil Mechanics in Engineering Practice

Unsaturated Soil Mechanics in Engineering Practice
Author: Delwyn G. Fredlund
Publisher: John Wiley & Sons
Total Pages: 946
Release: 2012-07-30
Genre: Technology & Engineering
ISBN: 1118280504

Download Unsaturated Soil Mechanics in Engineering Practice Book in PDF, ePub and Kindle

The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.


Unsaturated Soils for Asia

Unsaturated Soils for Asia
Author: H. Raharjdo
Publisher: CRC Press
Total Pages: 873
Release: 2020-09-10
Genre: Technology & Engineering
ISBN: 1000100367

Download Unsaturated Soils for Asia Book in PDF, ePub and Kindle

This is a collection of articles from the Asian conference UNSAT-ASIA 2000, covering topics such as: historical developments; numerical modelling; suction measurement techniques; permeability and flow; mass transport; and engineering applications.


Advancing Culture of Living with Landslides

Advancing Culture of Living with Landslides
Author: Matjaz Mikos
Publisher: Springer
Total Pages: 1148
Release: 2017-06-10
Genre: Nature
ISBN: 331953498X

Download Advancing Culture of Living with Landslides Book in PDF, ePub and Kindle

This volume contains peer-reviewed papers from the Fourth World Landslide Forum organized by the International Consortium on Landslides (ICL), the Global Promotion Committee of the International Programme on Landslides (IPL), University of Ljubljana (UL) and Geological Survey of Slovenia in Ljubljana, Slovenia from May 29 to June 2,. The complete collection of papers from the Forum is published in five full-color volumes. This second volume contains the following: • Two keynote lectures • Landslide Field Recognition and Identification: Remote Sensing Techniques, Field Techniques • Landslide Investigation: Field Investigations, Laboratory Testing • Landslide Modeling: Landslide Mechanics, Simulation Models • Landslide Hazard Risk Assessment and Prediction: Landslide Inventories and Susceptibility, Hazard Mapping Methods, Damage Potential Prof. Matjaž Mikoš is the Forum Chair of the Fourth World Landslide Forum. He is the Vice President of International Consortium on Landslides and President of the Slovenian National Platform for Disaster Risk Reduction. Prof. Binod Tiwari is the Coordinator of the Volume 2 of the Fourth World Landslide Forum. He is a Board member of the International Consortium on Landslides and an Executive Editor of the International Journal “Landslides”. He is the Chair-Elect of the Engineering Division of the US Council of Undergraduate Research, Award Committee Chair of the American Society of Civil Engineering, Geo-Institute’s Committee on Embankments, Slopes, and Dams Committee. Prof. Yueping Yin is the President of the International Consortium on Landslides and the Chairman of the Committee of Geo-Hazards Prevention of China, and the Chief Geologist of Geo-Hazard Emergency Technology, Ministry of Land and Resources, P.R. China. Prof. Kyoji Sassa is the Founding President of the International Consortium on Landslides (ICL). He is Executive Director of ICL and the Editor-in-Chief of International Journal“Landslides” since its foundation in 2004. IPL (International Programme on Landslides) is a programme of the ICL. The programme is managed by the IPL Global Promotion Committee including ICL and ICL supporting organizations, UNESCO, WMO, FAO, UNISDR, UNU, ICSU, WFEO, IUGS and IUGG. The IPL contributes to the United Nations International Strategy for Disaster Reduction and the ISDR-ICL Sendai Partnerships 2015–2025.


Proceedings of the Indian Geotechnical Conference 2019

Proceedings of the Indian Geotechnical Conference 2019
Author: Satyajit Patel
Publisher: Springer Nature
Total Pages: 766
Release: 2021-04-29
Genre: Science
ISBN: 9813363460

Download Proceedings of the Indian Geotechnical Conference 2019 Book in PDF, ePub and Kindle

This book comprises select proceedings of the annual conference of the Indian Geotechnical Society. The conference brings together research and case histories on various aspects of geotechnical and geoenvironmental engineering. The book presents papers on geotechnical applications and case histories, covering topics such as (i) Characterization of Geomaterials and Physical Modelling; (ii) Foundations and Deep Excavations; (iii) Soil Stabilization and Ground Improvement; (iv) Geoenvironmental Engineering and Waste Material Utilization; (v) Soil Dynamics and Earthquake Geotechnical Engineering; (vi) Earth Retaining Structures, Dams and Embankments; (vii) Slope Stability and Landslides; (viii) Transportation Geotechnics; (ix) Geosynthetics Applications; (x) Computational, Analytical and Numerical Modelling; (xi) Rock Engineering, Tunnelling and Underground Constructions; (xii) Forensic Geotechnical Engineering and Case Studies; and (xiii) Others Topics: Behaviour of Unsaturated Soils, Offshore and Marine Geotechnics, Remote Sensing and GIS, Field Investigations, Instrumentation and Monitoring, Retrofitting of Geotechnical Structures, Reliability in Geotechnical Engineering, Geotechnical Education, Codes and Standards, and other relevant topics. The contents of this book are of interest to researchers and practicing engineers alike.


Geohazard Potential of Rainfall Induced Slope Failure on Expansive Clay

Geohazard Potential of Rainfall Induced Slope Failure on Expansive Clay
Author: Jubair Hossain
Publisher:
Total Pages:
Release: 2012
Genre: Highway engineering
ISBN:

Download Geohazard Potential of Rainfall Induced Slope Failure on Expansive Clay Book in PDF, ePub and Kindle

Each year, rain induced slope failures cause significant damages in highway infrastructures and environments, as well as tragic losses of human lives around the world. Rainfall-induced slope failure is a common problem in areas with slope constructed on high plasticity clays. These post failure costs can be significantly reduced if precautions are taken ahead of time. Development of an early hazard warning system based on weather forecast data can help identify potential slopes susceptible to failure due to rainfall. But development of such system will require a better understanding of the in situ behavior of soil due to rainwater infiltration as well as changes in shear strength characteristics of the soil. Slope stability studies in different parts of the world have indicated that infiltration of rain water into the soil has an adverse effect on the stability of earth slopes. During the infiltration process, the matric suction in the unsaturated soil slope decreases as the saturation increases with time, thereby reducing the shear strength of the soil. Therefore, it is important to identify the depth of moisture variation zone (i.e., active zone), along with field infiltration behavior, to accurately predict the response and stability of earth slopes constructed on expansive clay when exposed to a rainfall event. The objectives of this research are to determine, 1) the active zone of expansive clayey soil, 2) changes in moisture content and matric suction of soil slopes constructed on expansive clay due to infiltration of rainwater, 3) effects of rainwater infiltration on soil shear strength, 4) modeling and determining geohazard potential of soil slopes due to rainwater infiltration and finally 5) recommendation for future study. A field instrumentation program was undertaken to determine the active zone and study the infiltration behavior of embankment slope constructed on high plasticity expansive clay. An experimental program was developed to study the soil water retention characteristics and associated shear strength for different suction values. The results from laboratory testing and field instrumentation was combined with numerical modeling to study the effect of rainfall infiltration and associated geohazard potential of slope constructed on expansive clay. Results obtained from the field instrumentation, indicates that the variation in the moisture content and matric suction were different at different depth. The maximum variation often occurred near the ground surface (i.e. at 1.2 m depth) and the magnitude of variation decreased with increase in depth. Presence of cracks at the crest also accelerated the ingress of water into the slope during rainfall events. The depth of active zone up to which moisture variation occurs was observed to be 3.6 m. Therefore, reduction in soil shear strength due to cyclic variation of weather condition is limited to a depth of 3.6 m which also matches close to the observed failure depth (3.04 m) on slopes constructed on high PI clay. Laboratory results on soil water characteristic curve (SWCC) showed that, SWCC of expansive clay yields higher air entry value and lower desaturation rate when compared with no volume change assumption during SWCC determination. Specimens compacted wet of optimum do not strongly depend on the applied stress history due to identical micro-structure formation. On the other hand, SWCC of expansive clay, compacted dry of optimum water content shows a shift to the right with high net normal stresses which indicates increase in air entry value. Results obtained from suction controlled ring shear tests indicate that both net normal stress and matric suction has significant influence on peak and residual strength of expansive clay. Both peak and residual strength increases with increase in net normal stress and matric suction. Results obtained from direct shear tests on saturated samples indicated that, shear strength of high PI expansive clay decreases when subjected to cycles of wetting and drying. The value of cohesion completely disappears due to wet dry cycles leading to shear strength condition at normally consolidated state. Based on the numerical modeling using PLAXIS, low intensity long duration rainfall was found to be most critical for expansive clay under current study which is consistent with the results previously reported for soils with low permeability. Effect of rainfall return period was found to be insignificant for the current study. Stability analyses performed for different rainfall event showed that, use of fully softened strength for active zone can reduce the factor of safety as low as twice the value as compared to the as compacted strength.


Landslides and Engineered Slopes. Experience, Theory and Practice

Landslides and Engineered Slopes. Experience, Theory and Practice
Author: Stefano Aversa
Publisher: CRC Press
Total Pages: 2224
Release: 2018-04-17
Genre: Science
ISBN: 1498788076

Download Landslides and Engineered Slopes. Experience, Theory and Practice Book in PDF, ePub and Kindle

Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard” and in a “Young Session” complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.


Landslides

Landslides
Author: Kyoji Sassa
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2006-01-16
Genre: Science
ISBN: 3540286802

Download Landslides Book in PDF, ePub and Kindle

Based on contributions to the first General Assembly of the International Consortium on Landslides, this reference and status report emphasizes the mechanisms of different types of landslides, landslide risk analysis, and sustainable disaster management. It comprises the achievements of the ICL over the past three years, since the Kyoto assembly. It consists of three parts: research results of the International Programme on Landslides (IPL); contributions on landslide risk analysis; and articles on sustainable disaster management. In addition, the history of the ICL activities (under the support of UNESCO, WMO, FAO, UN/ISDR, and UNU) is recounted to create a comprehensive overview of international activity on landslides. The contributions reflect a wide range of topics and concerns, randing from field studies, identification of objects of cultural heritage at landslide risk, as well as landslide countermeasures.