Quantum Theory Of The Optical And Electronic Properties Of Semiconductors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Theory Of The Optical And Electronic Properties Of Semiconductors PDF full book. Access full book title Quantum Theory Of The Optical And Electronic Properties Of Semiconductors.

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors
Author: Hartmut Haug
Publisher: World Scientific
Total Pages: 472
Release: 2004
Genre: Technology & Engineering
ISBN: 9789812387561

Download Quantum Theory of the Optical and Electronic Properties of Semiconductors Book in PDF, ePub and Kindle

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors
Author: Hartmut Haug
Publisher: World Scientific Publishing Company
Total Pages: 484
Release: 2009-01-22
Genre: Technology & Engineering
ISBN: 9813101113

Download Quantum Theory of the Optical and Electronic Properties of Semiconductors Book in PDF, ePub and Kindle

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz–Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics. This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, results are presented to show the importance of Coulombic effects on the semiconductor luminescence and to elucidate the role of excitonic populations.


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors
Author: Hartmut Haug
Publisher: World Scientific Publishing Company
Total Pages: 492
Release: 1994-10-31
Genre: Science
ISBN: 9813104783

Download Quantum Theory of the Optical and Electronic Properties of Semiconductors Book in PDF, ePub and Kindle

This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy


Electronic Properties of Doped Semiconductors

Electronic Properties of Doped Semiconductors
Author: B.I. Shklovskii
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2013-11-09
Genre: Science
ISBN: 3662024039

Download Electronic Properties of Doped Semiconductors Book in PDF, ePub and Kindle

First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.


Semiconductor Quantum Dots

Semiconductor Quantum Dots
Author: Ladislaus Alexander Banyai
Publisher: World Scientific
Total Pages: 264
Release: 1993-05-28
Genre: Science
ISBN: 9814504238

Download Semiconductor Quantum Dots Book in PDF, ePub and Kindle

Semiconductor Quantum Dots presents an overview of the background and recent developments in the rapidly growing field of ultrasmall semiconductor microcrystallites, in which the carrier confinement is sufficiently strong to allow only quantized states of the electrons and holes. The main emphasis of this book is the theoretical analysis of the confinement induced modifications of the optical and electronic properties of quantum dots in comparison with extended materials. The book develops the theoretical background material for the analysis of carrier quantum-confinement effects, introduces the different confinement regimes for relative or center-of-mass motion quantization of the electron-hole-pairs, and gives an overview of the best approximation schemes for each regime. A detailed discussion of the carrier states in quantum dots is presented and surface polarization instabilities are analyzed, leading to the self-trapping of carriers near the surface of the dots. The influence of spin-orbit coupling on the quantum-confined carrier states is discussed. The linear and nonlinear optical properties of small and large quantum dots are studied in detail and the influence of the quantum-dot size distribution in many realistic samples is outlined. Phonons in quantum dots as well as the influence of external electric or magnetic fields are also discussed. Last but not least the recent developments dealing with regular systems of quantum dots are also reviewed. All things included, this is an important piece of work on semiconductor quantum dots not to be dismissed by serious researchers and physicists.


The k p Method

The k p Method
Author: Lok C. Lew Yan Voon
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2009-06-06
Genre: Science
ISBN: 3540928723

Download The k p Method Book in PDF, ePub and Kindle

I ?rst heard of k·p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k·p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k·p technique to predict and ?t non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter’s recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks’s talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k·p method for interpreting my data in a simple way.


Optical Properties of Semiconductor Nanocrystals

Optical Properties of Semiconductor Nanocrystals
Author: S. V. Gaponenko
Publisher: Cambridge University Press
Total Pages: 263
Release: 1998-10-28
Genre: Science
ISBN: 0521582415

Download Optical Properties of Semiconductor Nanocrystals Book in PDF, ePub and Kindle

Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.


Quantum Theory of Real Materials

Quantum Theory of Real Materials
Author: James R. Chelikowsky
Publisher: Springer Science & Business Media
Total Pages: 580
Release: 1996-02-29
Genre: Science
ISBN: 9780792396666

Download Quantum Theory of Real Materials Book in PDF, ePub and Kindle

A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.