Quantum Mechanical Molecular Mechanical Approaches For The Investigation Of Chemical Systems Recent Developments And Advanced Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Mechanical Molecular Mechanical Approaches For The Investigation Of Chemical Systems Recent Developments And Advanced Applications PDF full book. Access full book title Quantum Mechanical Molecular Mechanical Approaches For The Investigation Of Chemical Systems Recent Developments And Advanced Applications.

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications
Author: Thomas S. Hofer
Publisher: Frontiers Media SA
Total Pages: 188
Release: 2018-11-28
Genre:
ISBN: 2889456269

Download Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications Book in PDF, ePub and Kindle

The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular systems, a large variety of QM/MM implementations have been developed over the last decades, extending the range of applicability to address research questions relevant for both solution and solid-state chemistry as well. Despite approaching their 50th anniversary in 2022, the formulation of improved QM/MM methods is still an active field of research, with the aim to (i) extend the applicability to address an even broader range of research questions in chemistry and related disciplines, and (ii) further push the accuracy achieved in the QM/MM description beyond that of established formulations. While being a highly successful approach on its own, the combination of the QM/MM strategy with other established theoretical techniques greatly extends the capabilities of the computational approaches. For instance the integration of a suitable QM/MM technique into the highly successful Monte-Carlo and molecular dynamics simulation protocols enables the description of the chemical systems on the basis of an ensemble that is in part constructed on a quantum-mechanical basis. This eBook presents the contributions of a recent Research Topic published in Frontiers in Chemistry, that highlight novel approaches as well as advanced applications of QM/MM method to a broad variety of targets. In total 2 review articles and 10 original research contributions from 48 authors are presented, covering 12 different countries on four continents. The range of research questions addressed by the individual contributions provide a lucid overview on the versatility of the QM/MM method, and demonstrate the general applicability and accuracy that can be achieved for different problems in chemical sciences. Together with the development of improved algorithms to enhance the capabilities of quantum chemical methods and the continuous advancement in the capacities of computational resources, it can be expected that the impact of QM/MM methods in chemical sciences will be further increased already in the near future.


Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems - Recent Developments and Advanced Applications

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems - Recent Developments and Advanced Applications
Author:
Publisher:
Total Pages: 0
Release: 2018
Genre:
ISBN:

Download Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems - Recent Developments and Advanced Applications Book in PDF, ePub and Kindle

The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular systems, a large variety of QM/MM implementations have been developed over the last decades, extending the range of applicability to address research questions relevant for both solution and solid-state chemistry as well. Despite approaching their 50th anniversary in 2022, the formulation of improved QM/MM methods is still an active field of research, with the aim to (i) extend the applicability to address an even broader range of research questions in chemistry and related disciplines, and (ii) further push the accuracy achieved in the QM/MM description beyond that of established formulations. While being a highly successful approach on its own, the combination of the QM/MM strategy with other established theoretical techniques greatly extends the capabilities of the computational approaches. For instance the integration of a suitable QM/MM technique into the highly successful Monte-Carlo and molecular dynamics simulation protocols enables the description of the chemical systems on the basis of an ensemble that is in part constructed on a quantum-mechanical basis. This eBook presents the contributions of a recent Research Topic published in Frontiers in Chemistry, that highlight novel approaches as well as advanced applications of QM/MM method to a broad variety of targets. In total 2 review articles and 10 original research contributions from 48 authors are presented, covering 12 different countries on four continents. The range of research questions addressed by the individual contributions provide a lucid overview on the versatility of the QM/MM method, and demonstrate the general applicability and accuracy that can be achieved for different problems in chemical sciences. Together with the development of improved algorithms to enhance the capabilities of quantum chemical methods and the continuous advancement in the capacities of computational resources, it can be expected that the impact of QM/MM methods in chemical sciences will be further increased already in the near future.


Computer Simulations in Molecular Biology

Computer Simulations in Molecular Biology
Author: Hiqmet Kamberaj
Publisher: Springer Nature
Total Pages: 306
Release: 2023-07-31
Genre: Science
ISBN: 3031348397

Download Computer Simulations in Molecular Biology Book in PDF, ePub and Kindle

This book covers a range of topics in quantum mechanics and molecular dynamics simulation, including computational modeling and machine learning approaches. The book also provides a Python GUI and tutorials for simulating molecular biological systems and presents case studies of quantum mechanics simulations for predicting electronic properties. Its pedagogical formatting makes it easy for students to understand and follow and has been praised for providing clear and detailed explanations of complex topics. This book is ideal for graduate students and researchers in theoretical and computational biophysics, physics, chemistry, and materials science, as well as postgraduates in applied mathematics, computer science, and bioinformatics.


Molecular Quantum Dynamics

Molecular Quantum Dynamics
Author: Fabien Gatti
Publisher: Springer Science & Business Media
Total Pages: 281
Release: 2014-04-09
Genre: Science
ISBN: 3642452906

Download Molecular Quantum Dynamics Book in PDF, ePub and Kindle

This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.


Combining Quantum Mechanics and Molecular Mechanics. Some Recent Progresses in QM/MM Methods

Combining Quantum Mechanics and Molecular Mechanics. Some Recent Progresses in QM/MM Methods
Author:
Publisher: Academic Press
Total Pages: 433
Release: 2010-06-14
Genre: Science
ISBN: 0123808995

Download Combining Quantum Mechanics and Molecular Mechanics. Some Recent Progresses in QM/MM Methods Book in PDF, ePub and Kindle

Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments


Challenges in Computational Enzymology

Challenges in Computational Enzymology
Author: Vicent Moliner
Publisher: Frontiers Media SA
Total Pages: 173
Release: 2019-12-31
Genre:
ISBN: 2889632725

Download Challenges in Computational Enzymology Book in PDF, ePub and Kindle


Methods of Molecular Quantum Mechanics

Methods of Molecular Quantum Mechanics
Author: Valerio Magnasco
Publisher: John Wiley & Sons
Total Pages: 304
Release: 2009-12-21
Genre: Science
ISBN: 0470684429

Download Methods of Molecular Quantum Mechanics Book in PDF, ePub and Kindle

This advanced text introduces to the advanced undergraduate and graduate student the mathematical foundations of the methods needed to carry out practical applications in electronic molecular quantum mechanics, a necessary preliminary step before using commercial programmes to carry out quantum chemistry calculations. Major features of the book include: Consistent use of the system of atomic units, essential for simplifying all mathematical formulae Introductory use of density matrix techniques for interpreting properties of many-body systems An introduction to valence bond methods with an explanation of the origin of the chemical bond A unified presentation of basic elements of atomic and molecular interactions The book is intended for advanced undergraduate and first-year graduate students in chemical physics, theoretical and quantum chemistry. In addition, it is relevant to students from physics and from engineering sub-disciplines such as chemical engineering and materials sciences.


Applications of Quantum Dynamics in Chemistry

Applications of Quantum Dynamics in Chemistry
Author: Fabien Gatti
Publisher: Springer
Total Pages: 437
Release: 2017-09-05
Genre: Science
ISBN: 331953923X

Download Applications of Quantum Dynamics in Chemistry Book in PDF, ePub and Kindle

This book explains the usage and application of Molecular Quantum Dynamics, the methodology where both the electrons and the nuclei in a molecule are treated with quantum mechanical calculations. This volume of Lecture Notes in Chemistry addresses graduate students and postdocs in the field of theoretical chemistry, as well as postgraduate students, researchers and teachers from neighboring fields, such as quantum physics, biochemistry, biophysics, or anyone else who is interested in this rising method in theoretical chemistry, and who wants to gain experience in the opportunities it can offer. It can also be useful for teachers interested in illustrative examples of time-dependent quantum mechanics as animations of realistic wave packets have been designed to assist in visualization. Assuming a basic knowledge about quantum mechanics, the authors link their explanations to recent experimental investigations where Molecular Quantum Dynamics proved successful and necessary for the understanding of the experimental results. Examples including reactive scattering, photochemistry, tunneling, femto- and attosecond chemistry and spectroscopy, cold chemistry or crossed-beam experiments illustrate the power of the method. The book restricts complicated formalism to the necessary and in a self-contained and clearly explained way, offering the reader an introduction to, and instructions for, practical exercises. Continuative explanation and math are optionally supplemented for the interested reader. The reader learns how to apply example simulations with the MCTDH program package (Multi Configuration Time Dependent Hartree calculations). Readers can thus obtain the tools to run their own simulations and apply them to their problems. Selected scripts and program code from the examples are made available as supplementary material. This book bridges the gap between the existing textbooks on fundamental theoretical chemistry and research monographs focusing on sophisticated applications. It is a must-read for everyone who wants to gain a sound understanding of Molecular Quantum Dynamics simulations and to obtain basic experience in running their own simulations.


Multi-scale Quantum Models for Biocatalysis

Multi-scale Quantum Models for Biocatalysis
Author: Darrin M. York
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2009-05-30
Genre: Science
ISBN: 1402099568

Download Multi-scale Quantum Models for Biocatalysis Book in PDF, ePub and Kindle

“Multi-scale Quantum Models for Biocatalysis” explores various molecular modelling techniques and their applications in providing an understanding of the detailed mechanisms at play during biocatalysis in enzyme and ribozyme systems. These areas are reviewed by an international team of experts in theoretical, computational chemistry, and biophysics. This book presents detailed reviews concerning the development of various techniques, including ab initio molecular dynamics, density functional theory, combined QM/MM methods, solvation models, force field methods, and free-energy estimation techniques, as well as successful applications of multi-scale methods in the biocatalysis systems including several protein enzymes and ribozymes. This book is an excellent source of information for research professionals involved in computational chemistry and physics, material science, nanotechnology, rational drug design and molecular biology and for students exposed to these research areas.