Quantum Computational Number Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Computational Number Theory PDF full book. Access full book title Quantum Computational Number Theory.

Quantum Computational Number Theory

Quantum Computational Number Theory
Author: Song Y. Yan
Publisher: Springer
Total Pages: 252
Release: 2015-12-26
Genre: Computers
ISBN: 3319258230

Download Quantum Computational Number Theory Book in PDF, ePub and Kindle

This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.


Quantum Computational Number Theory

Quantum Computational Number Theory
Author: Song Y. Yan
Publisher: Springer
Total Pages: 252
Release: 2018-03-30
Genre: Computers
ISBN: 9783319798462

Download Quantum Computational Number Theory Book in PDF, ePub and Kindle

This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, DLP and ECDLP based cryptographic systems. Chapters also cover various other quantum algorithms for Pell's equation, principal ideal, unit group, class group, Gauss sums, prime counting function, Riemann's hypothesis and the BSD conjecture. Quantum Computational Number Theory is self-contained and intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the related fields. Number theorists, cryptographers and professionals working in quantum computing, cryptography and network security will find this book a valuable asset.


Computational Number Theory and Modern Cryptography

Computational Number Theory and Modern Cryptography
Author: Song Y. Yan
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2013-01-29
Genre: Computers
ISBN: 1118188586

Download Computational Number Theory and Modern Cryptography Book in PDF, ePub and Kindle

The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.


Mathematics of Quantum Computing

Mathematics of Quantum Computing
Author: Wolfgang Scherer
Publisher: Springer Nature
Total Pages: 764
Release: 2019-11-13
Genre: Computers
ISBN: 3030123588

Download Mathematics of Quantum Computing Book in PDF, ePub and Kindle

This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.


Classical and Quantum Computation

Classical and Quantum Computation
Author: Alexei Yu. Kitaev
Publisher: American Mathematical Soc.
Total Pages: 274
Release: 2002
Genre: Computers
ISBN: 0821832298

Download Classical and Quantum Computation Book in PDF, ePub and Kindle

An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.


Quantum Computing Since Democritus

Quantum Computing Since Democritus
Author: Scott Aaronson
Publisher: Cambridge University Press
Total Pages: 403
Release: 2013-03-14
Genre: Computers
ISBN: 0521199565

Download Quantum Computing Since Democritus Book in PDF, ePub and Kindle

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.


Applied Number Theory

Applied Number Theory
Author: Harald Niederreiter
Publisher: Springer
Total Pages: 442
Release: 2015-09-01
Genre: Mathematics
ISBN: 3319223216

Download Applied Number Theory Book in PDF, ePub and Kindle

This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.


International Symposium on Mathematics, Quantum Theory, and Cryptography

International Symposium on Mathematics, Quantum Theory, and Cryptography
Author: Tsuyoshi Takagi
Publisher: Springer Nature
Total Pages: 275
Release: 2020-10-22
Genre: Technology & Engineering
ISBN: 981155191X

Download International Symposium on Mathematics, Quantum Theory, and Cryptography Book in PDF, ePub and Kindle

This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography.


A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
Total Pages: 556
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662029456

Download A Course in Computational Algebraic Number Theory Book in PDF, ePub and Kindle

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.