Pulsed Laser Deposition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Pulsed Laser Deposition PDF full book. Access full book title Pulsed Laser Deposition.

Pulsed Laser Deposition of Thin Films

Pulsed Laser Deposition of Thin Films
Author: Robert Eason
Publisher: John Wiley & Sons
Total Pages: 754
Release: 2007-12-14
Genre: Science
ISBN: 0470052112

Download Pulsed Laser Deposition of Thin Films Book in PDF, ePub and Kindle

Edited by major contributors to the field, this text summarizes current or newly emerging pulsed laser deposition application areas. It spans the field of optical devices, electronic materials, sensors and actuators, biomaterials, and organic polymers. Every scientist, technologist and development engineer who has a need to grow and pattern, to apply and use thin film materials will regard this book as a must-have resource.


Pulsed Laser Deposition of Thin Films

Pulsed Laser Deposition of Thin Films
Author: Douglas B. Chrisey
Publisher: Wiley-Interscience
Total Pages: 0
Release: 1994-06-21
Genre: Technology & Engineering
ISBN: 9780471592181

Download Pulsed Laser Deposition of Thin Films Book in PDF, ePub and Kindle

A comprehensive overview of what is required to set up and begin research in this newly developing technology and understand the basics of the process. Internationally recognized experts in their fields cover such fundamentals as history, theory, film characteristics, surface modification, laser technology, materials and applications including excellent reviews regarding the entire areas of semiconductor buffer layers, thin-film ferroelectrics and ferrites along with the work involving films deposited by PLD.


Current Research in Pulsed Laser Deposition

Current Research in Pulsed Laser Deposition
Author: Liviu Duta
Publisher: MDPI
Total Pages: 224
Release: 2021-08-30
Genre: Medical
ISBN: 3036510443

Download Current Research in Pulsed Laser Deposition Book in PDF, ePub and Kindle

Despite its limitation in terms of surface covered area, the PLD technique still gathers interest among researchers by offering endless possibilities for tuning thin film composition and enhancing their properties of interest due to: (i) the easiness of a stoichiometric transfer even for very complex target materials, (ii) high adherence of the deposited structures to the substrate, (iii) controlled degree of phase, crystallinity, and thickness of deposited coatings, (iv) versatility of the experimental set-up which allows for simultaneous ablation of multiple targets resulting in combinatorial maps or consecutive ablation of multiple targets producing multi-layered structures, and (v) adjustment of the number of laser pulses, resulting in either a spread of nanoparticles, islands of materials or a complete covering of a surface. Moreover, a variation of PLD, known as Matrix Assisted Pulsed Laser Evaporation, allows for deposition of organic materials, ranging from polymers to proteins and even living cells, otherwise difficult to transfer unaltered in the form of thin films by other techniques. Furthermore, the use of laser light as transfer agent ensures purity of films and pulse-to-pulse deposition allows for an unprecedented control of film thickness at the nm level. This Special Issue is a collection of state-of-the art research papers and reviews in which the topics of interest are devoted to thin film synthesis by PLD and MAPLE, for numerous research and industry field applications, such as bio-active coatings for medical implants and hard, protective coatings for cutting and drilling tools withstanding high friction and elevated temperatures, sensors, solar cells, lithography, magnetic devices, energy-storage and conversion devices, controlled drug delivery and in situ microstructuring for boosting of surface properties.


Pulsed Laser Ablation of Solids

Pulsed Laser Ablation of Solids
Author: Mihai Stafe
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2013-11-09
Genre: Science
ISBN: 3642409784

Download Pulsed Laser Ablation of Solids Book in PDF, ePub and Kindle

The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and dimensions of the ablated micro- and nano-structures are performed. The validity and required refinement of different models in different experimental conditions is provided. The pulsed laser deposition process which bases on collecting the ablated particles on a surface is analyzed in terms of efficiency and quality of the deposited films as a function of ambient conditions, target material, laser parameters and substrate characteristics. The interaction between the incident laser and the ablation plasma is analyzed with respect to its influence on the structures of the deposited films and its capacity to generate high harmonics and single attosecond pulses which are highly desirable in pump-probe experiments.


Pulsed Laser Ablation

Pulsed Laser Ablation
Author: Ion N. Mihailescu
Publisher: CRC Press
Total Pages: 564
Release: 2018-01-09
Genre: Science
ISBN: 1351733532

Download Pulsed Laser Ablation Book in PDF, ePub and Kindle

Pulsed laser–based techniques for depositing and processing materials are an important area of modern experimental and theoretical scientific research and development, with promising, challenging opportunities in the fields of nanofabrication and nanostructuring. Understanding the interplay between deposition/processing conditions, laser parameters, as well as material properties and dimensionality is demanding for improved fundamental knowledge and novel applications. This book introduces and discusses the basic principles of pulsed laser–matter interaction, with a focus on its peculiarities and perspectives compared to other conventional techniques and state-of-the-art applications. The book starts with an overview of the growth topics, followed by a discussion of laser–matter interaction depending on laser pulse duration, background conditions, materials, and combination of materials and structures. The information outlines the foundation to introduce examples of laser nanostructuring/processing of materials, pointing out the importance of pulsed laser–based technologies in modern (nano)science. With respect to similar texts and monographs, the book offers a comprehensive review including bottom-up and top-down laser-induced processes for nanoparticles and nanomicrostructure generation. Theoretical models are discussed by correlation with advanced experimental protocols in order to account for the fundamentals and underline physical mechanisms of laser–matter interaction. Reputed, internationally recognized experts in the field have contributed to this book. In particular, this book is suitable for a reader (graduate students as well as postgraduates and more generally researchers) new to the subject of pulsed laser ablation in order to gain physical insight into and advanced knowledge of mechanisms and processes involved in any deposition/processing experiment based on pulsed laser–matter interaction. Since knowledge in the field is given step by step comprehensively, this book serves as a valid introduction to the field as well as a foundation for further specific readings.


Handbook of Laser Micro- and Nano-Engineering

Handbook of Laser Micro- and Nano-Engineering
Author: KOJI SUGIOKA.
Publisher:
Total Pages:
Release: 2019
Genre: Lasers in engineering
ISBN: 9783319695372

Download Handbook of Laser Micro- and Nano-Engineering Book in PDF, ePub and Kindle

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.


Advanced Nano Deposition Methods

Advanced Nano Deposition Methods
Author: Yuan Lin
Publisher: John Wiley & Sons
Total Pages: 328
Release: 2016-12-12
Genre: Technology & Engineering
ISBN: 3527340254

Download Advanced Nano Deposition Methods Book in PDF, ePub and Kindle

This concise reference summarizes the latest results in nano-structured thin films, the first to discuss both deposition methods and electronic applications in detail. Following an introduction to this rapidly developing field, the authors present a variety of organic and inorganic materials along with new deposition techniques, and conclude with an overview of applications and considerations for their technology deployment.


Laser Ablation

Laser Ablation
Author: Tatiana Itina
Publisher: BoD – Books on Demand
Total Pages: 292
Release: 2017-12-21
Genre: Science
ISBN: 9535136992

Download Laser Ablation Book in PDF, ePub and Kindle

Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser-matter interactions. Many experiments were undertaken to clarify the major ablation mechanisms. At the same time, numerous theoretical studies, both analytical and numerical, were proposed to describe these interactions. These studies paved the ways toward the development of numerous laser applications, ranging from laser micro- and nanomachining to material analysis, nanoparticle and nanostructure formation, thin-film deposition, etc. Recently, more and more promising novel fields of laser applications have appeared, including biomedicine, catalysis, photovoltaic cells, etc. This book intends to provide the reader with a comprehensive overview of the current state of the art in laser ablation, from its fundamental mechanisms to novel applications.


Intermediate-Temperature Solid Oxide Fuel Cells

Intermediate-Temperature Solid Oxide Fuel Cells
Author: Zongping Shao
Publisher: Springer
Total Pages: 271
Release: 2016-09-12
Genre: Technology & Engineering
ISBN: 366252936X

Download Intermediate-Temperature Solid Oxide Fuel Cells Book in PDF, ePub and Kindle

This book discusses recent advances in intermediate-temperature solid oxide fuel cells (IT-SOFCs), focusing on material development and design, mechanism study, reaction kinetics and practical applications. It consists of five chapters presenting different types of reactions and materials employed in electrolytes, cathodes, anodes, interconnects and sealants for IT-SOFCs. It also includes two chapters highlighting new aspects of these solid oxide fuel cells and exploring their practical applications. This insightful and useful book appeals to a wide readership in various fields, including solid oxide fuel cells, electrochemistry, membranes and ceramics. Zongping Shao is a Professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Energy, Nanjing University of Technology, China. Moses O. Tade is a Professor at the Department of Chemical Engineering, Curtin University, Australia.


Laser Ablation and Its Applications

Laser Ablation and Its Applications
Author: Claude Phipps
Publisher: Springer Science & Business Media
Total Pages: 598
Release: 2007
Genre: Science
ISBN: 0387304525

Download Laser Ablation and Its Applications Book in PDF, ePub and Kindle

Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficult. Laser Ablation and its Applications emphasizes the wide range of these topics rather than - as is so often the case in advanced science – focusing on one specialty or discipline. The book is divided into four sections: theory and modeling, ultrafast interactions, material processing and laser-matter interaction in novel regimes. The latter range from MALDI to ICF, SNOM’s and femtosecond nanosurgery to laser space propulsion. The book arose from the SPIE series of High Power Laser Ablation Symposia which began in 1998. It is intended for a graduate course in laser interactions with plasmas and materials, but it should be accessible to anyone with a graduate degree in physics or engineering. It is also intended as a major reference work to familiarize scientists just entering the field with laser ablation and its applications.