Pseudo Riemannian Geometry Delta Invariants And Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Pseudo Riemannian Geometry Delta Invariants And Applications PDF full book. Access full book title Pseudo Riemannian Geometry Delta Invariants And Applications.

Pseudo-Riemannian Geometry, [delta]-invariants and Applications

Pseudo-Riemannian Geometry, [delta]-invariants and Applications
Author: Bang-yen Chen
Publisher: World Scientific
Total Pages: 510
Release: 2011
Genre: Mathematics
ISBN: 9814329630

Download Pseudo-Riemannian Geometry, [delta]-invariants and Applications Book in PDF, ePub and Kindle

The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included.The second part of this book is on ë-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as ë-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between ë-invariants and the main extrinsic invariants. Since then many new results concerning these ë-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades.


Pseudo-riemannian Geometry, Delta-invariants And Applications

Pseudo-riemannian Geometry, Delta-invariants And Applications
Author: Bang-yen Chen
Publisher: World Scientific
Total Pages: 510
Release: 2011-03-23
Genre: Mathematics
ISBN: 9814462489

Download Pseudo-riemannian Geometry, Delta-invariants And Applications Book in PDF, ePub and Kindle

The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included.The second part of this book is on δ-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as δ-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between δ-invariants and the main extrinsic invariants. Since then many new results concerning these δ-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades.


The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds

The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds
Author: Peter B. Gilkey
Publisher: Imperial College Press
Total Pages: 389
Release: 2007
Genre: Mathematics
ISBN: 1860948588

Download The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds Book in PDF, ePub and Kindle

Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and StanilovOCoTsankovOCoVidev theory."


Differential Geometry - Proceedings Of The Viii International Colloquium

Differential Geometry - Proceedings Of The Viii International Colloquium
Author: Jesus A Alvarez Lopez
Publisher: World Scientific
Total Pages: 343
Release: 2009-04-27
Genre: Mathematics
ISBN: 9814468460

Download Differential Geometry - Proceedings Of The Viii International Colloquium Book in PDF, ePub and Kindle

This volume contains research and expository papers on recent advances in foliations and Riemannian geometry. Some of the topics covered in this volume include: topology, geometry, dynamics and analysis of foliations, curvature, submanifold theory, Lie groups and harmonic maps.Among the contributions, readers may find an extensive survey on characteristic classes of Riemannian foliations offering also new results, an article showing the uniform simplicity of certain diffeomorphism groups, an exposition of convergences of contact structures to foliations from the point of view of Thurston's and Thurston-Bennequin's inequalities, a discussion about Fatou-Julia decompositions for foliations and a description of singular Riemannian foliations on spaces without conjugate points.Papers on submanifold theory focus on the existence of graphs with prescribed mean curvature and mean curvature flow for spacelike graphs, isometric and conformal deformations and detailed surveys on totally geodesic submanifolds in symmetric spaces, cohomogeneity one actions on hyperbolic spaces and rigidity of geodesic spheres in space forms. Geometric realizability of curvature tensors and curvature operators are also treated in this volume with special attention to the affine and the pseudo-Riemannian settings. Also, some contributions on biharmonic maps and submanifolds enrich the scope of this volume in providing an overview of different topics of current interest in differential geometry.


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold
Author: Steven Rosenberg
Publisher: Cambridge University Press
Total Pages: 190
Release: 1997-01-09
Genre: Mathematics
ISBN: 9780521468312

Download The Laplacian on a Riemannian Manifold Book in PDF, ePub and Kindle

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.


Semi-Riemannian Geometry With Applications to Relativity

Semi-Riemannian Geometry With Applications to Relativity
Author: Barrett O'Neill
Publisher: Academic Press
Total Pages: 483
Release: 1983-07-29
Genre: Mathematics
ISBN: 0080570577

Download Semi-Riemannian Geometry With Applications to Relativity Book in PDF, ePub and Kindle

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.


Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
Total Pages: 378
Release: 2007-05-17
Genre: Mathematics
ISBN: 0198570082

Download Foliations and the Geometry of 3-Manifolds Book in PDF, ePub and Kindle

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.


Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold
Author: Steve Zelditch
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 2017-12-12
Genre: Eigenfunctions
ISBN: 1470410370

Download Eigenfunctions of the Laplacian on a Riemannian Manifold Book in PDF, ePub and Kindle

Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.


Differential Geometry

Differential Geometry
Author: Loring W. Tu
Publisher: Springer
Total Pages: 347
Release: 2017-06-01
Genre: Mathematics
ISBN: 3319550845

Download Differential Geometry Book in PDF, ePub and Kindle

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.