Prospects For Galactic Dark Matter Searches With The Cherenkov Telescope Array Cta PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Prospects For Galactic Dark Matter Searches With The Cherenkov Telescope Array Cta PDF full book. Access full book title Prospects For Galactic Dark Matter Searches With The Cherenkov Telescope Array Cta.

Searching for Dark Matter with Imaging Atmospheric Cherenkov Telescopes

Searching for Dark Matter with Imaging Atmospheric Cherenkov Telescopes
Author: Alessandro Montanari
Publisher: Springer
Total Pages: 0
Release: 2024-10-21
Genre: Science
ISBN: 9783031664694

Download Searching for Dark Matter with Imaging Atmospheric Cherenkov Telescopes Book in PDF, ePub and Kindle

This book provides a comprehensive review of the methodologies and searches for dark matter (DM) annihilation signals using very-high-energy gamma rays (VHE, E > 100 GeV), utilizing data from current Imaging Atmospheric Cherenkov Telescopes (IACTs) in the pre-Cherenkov Telescope Array (CTA) era. It presents the state-of-the-art statistical analysis methods and theoretical models related to TeV DM, applied to data from the H.E.S.S. telescope array, which is currently the most sensitive IACT array for observing the Galactic Center (GC), where the brightest DM annihilation signals are expected. The authors delve into the astrophysics of VHE gamma-ray production through cosmic ray acceleration. They explain the Imaging Atmospheric Cherenkov technique, describe the H.E.S.S. array, and discuss possibilities for DM annihilation-induced gamma-ray spectra and DM distribution profiles. By employing advanced statistical methods, they search for weak signals in the GC region using the H.E.S.S. Inner Galaxy Survey dataset and address systematic uncertainties. The authors present and debate the most constraining results on TeV dark matter models. Finally, this book presents the sensitivity of current IACTs to DM annihilation signals using IGS mock datasets, accounting for systematic and instrumental uncertainties. Detection prospects for canonical TeV DM models, such as the Wino, Higgsino, and quintuplet, are discussed. Sensitivity benchmarks on indirect DM searches with IACTs using H.E.S.S. as an example are provided, setting the stage for future developments in the CTA era. It serves as a consolidated resource for graduate students and researchers, presenting methodologies that could lead to significant advancements in the quest to understand dark matter.


Searching for Dark Matter with Cosmic Gamma Rays

Searching for Dark Matter with Cosmic Gamma Rays
Author: Andrea Albert
Publisher: Morgan & Claypool Publishers
Total Pages: 64
Release: 2016-09-06
Genre: Science
ISBN: 1681742691

Download Searching for Dark Matter with Cosmic Gamma Rays Book in PDF, ePub and Kindle

Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.


Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC

Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC
Author: Jelena Aleksić
Publisher: Springer
Total Pages: 213
Release: 2015-11-06
Genre: Science
ISBN: 3319231235

Download Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC Book in PDF, ePub and Kindle

This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.


Indirect Searches of Dark Matter and the Galactic Center at Very High Energy with H.E.S.S.

Indirect Searches of Dark Matter and the Galactic Center at Very High Energy with H.E.S.S.
Author: Aion Viana
Publisher:
Total Pages: 0
Release: 2012
Genre:
ISBN:

Download Indirect Searches of Dark Matter and the Galactic Center at Very High Energy with H.E.S.S. Book in PDF, ePub and Kindle

This thesis presents a series of data analysis and phenomenological studies on two main subject of the y-ray astronomy: the indirect searches of dark matter, and the study of the Galactic Center region with the H.E.S.S. telescope array. The indirect dark matter searches focus on the study of two classes of targets: dwarf galaxies and galaxy clusters. A detailed study of the H.E.S.S. observations towards the Sculptor and Carina dwarf galaxies, and towards the Fornax galaxy cluster are presented. In the absence of a significant signal coming from these object, constraints on the annihilation cross section of dark matter particle candidates are derived. The current H.E.S.S. dark matter constraints towards the Sagittarius are updated in light of recent realistic dark matter halo models. A prospect on the sensitivity of the future generation of Cherenkov telescopes, Le. CTA (Cherenkov Telescope Array), for the detection of a dark matter annihilation signal and conventional y-ray emissions is also given. The second subject of this thesis provides a detailed analysis of the very high energy y-ray data from the Galactic Center region observed by the H.E.S.S. experiment throughout the 2004-2011 period. The analysis and spectral reconstruction of the central source and the diffuse emission around this regioi are presented. A spectral subtraction of the diffuse emission contribution to the HESS J1745-2 spectral is performed and allows to recover the intrinsic central source spectrum. The spectra morphology of the diffuse emission region suggests the possibility of various accelerators being responsible for the observed emission.


Study of the Galactic Center and Dark Matter Search with H.E.S.S.

Study of the Galactic Center and Dark Matter Search with H.E.S.S.
Author: Lucia Rinchiuso
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Study of the Galactic Center and Dark Matter Search with H.E.S.S. Book in PDF, ePub and Kindle

The H.E.S.S. (High Energy Spectroscopic System) experiment is an array of five Cherenkov telescopes that observe the sky in gamma-rays from about 100 GeV up to several ten TeV.Gamma rays are produced in violent non-thermal phenomena in the Universe in the neighborhood of pulsars, supernovae, black holes, ..., and could also be produced by the annihilation of dark matter particles.Numerous cosmological and astrophysical probes suggest that 85% of the total matter budget in the Universe is of unknown origin. This component of matter known as dark matter is non baryonic and could consist of yet undiscovered particles which privileged candidates are arguably massive particles with electroweak couplings with ordinary matter (WIMPs).Dark matter particles may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are photons which detection at high energy with ground-based Cherenkov telescopes could bring unique information on the nature of the dark matter.H.E.S.S. observes dark-matter-dense regions of the sky such as the Galactic Center and dwarf galaxy satellites of the Milky Way. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars is performed.10 years of observations of the Galactic Center with the four-telescope H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The search for dark matter annihilation signals towards these targets provided the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies. The potential of dark matter detection with the upcoming Cherenkov Telescope Array (CTA) towards the inner Galactic halo are studied. They may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are high energy photons. The detection of these photons with ground-based Cherenkov telescopes may reveal the nature of the dark matter. H.E.S.S. have observed some dark-matter-dense regions of the sky likethe Galactic Center and dwarf galaxies satellites of the Milky Way. In this work 10 years of observations of the Galactic Center with the four-telescopes H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The searches for dark matter annihilation signals towards these targets produced the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies.Perspectives of dark matter detection with the future array CTA (Cherenkov Telescope Array) towards the inner Galactic halo are also discussed. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars complements the dark matter searches.


Science With The Cherenkov Telescope Array

Science With The Cherenkov Telescope Array
Author: The Cta Consortium
Publisher: World Scientific
Total Pages: 365
Release: 2018-12-31
Genre: Science
ISBN: 9813270101

Download Science With The Cherenkov Telescope Array Book in PDF, ePub and Kindle

This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.


Dark Matter Searches with Cherenkov Telescopes

Dark Matter Searches with Cherenkov Telescopes
Author:
Publisher:
Total Pages: 20
Release: 2012
Genre:
ISBN:

Download Dark Matter Searches with Cherenkov Telescopes Book in PDF, ePub and Kindle

In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.


Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy

Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-based TeV Gamma-ray Astronomy Book in PDF, ePub and Kindle

This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the characteristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.