Progress In Modeling And Simulation Of Batteries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress In Modeling And Simulation Of Batteries PDF full book. Access full book title Progress In Modeling And Simulation Of Batteries.

Progress in Modeling and Simulation of Batteries

Progress in Modeling and Simulation of Batteries
Author: John Turner
Publisher: SAE International
Total Pages: 98
Release: 2016-06-15
Genre: Science
ISBN: 076808282X

Download Progress in Modeling and Simulation of Batteries Book in PDF, ePub and Kindle

Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: • Thermal behavior and characteristics • Battery management system design and analysis • Moderately high-fidelity 3D capabilities • Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.


Battery System Modeling

Battery System Modeling
Author: Shunli Wang
Publisher: Elsevier
Total Pages: 356
Release: 2021-06-23
Genre: Science
ISBN: 0323904335

Download Battery System Modeling Book in PDF, ePub and Kindle

Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies


Modeling and Simulation of Lithium-ion Power Battery Thermal Management

Modeling and Simulation of Lithium-ion Power Battery Thermal Management
Author: Junqiu Li
Publisher: Springer Nature
Total Pages: 343
Release: 2022-05-09
Genre: Technology & Engineering
ISBN: 9811908443

Download Modeling and Simulation of Lithium-ion Power Battery Thermal Management Book in PDF, ePub and Kindle

This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.


Batteries - Theory, Modeling, and Simulation

Batteries - Theory, Modeling, and Simulation
Author: Yue Qi
Publisher: The Electrochemical Society
Total Pages: 152
Release: 2015
Genre: Advanced batteries
ISBN: 160768666X

Download Batteries - Theory, Modeling, and Simulation Book in PDF, ePub and Kindle


Towards a Systems-level Understanding of Battery Systems

Towards a Systems-level Understanding of Battery Systems
Author: Akshay Subramaniam
Publisher:
Total Pages: 220
Release: 2021
Genre:
ISBN:

Download Towards a Systems-level Understanding of Battery Systems Book in PDF, ePub and Kindle

Current imperatives of electrification and decarbonization entail significant improvements in energy density, performance, and cost metrics for battery technology. This has motivated active research into new materials, cell designs, and external controls to ensure safe and efficient operation. Modeling and simulation approaches have a powerful complementary function in this regard, most notably exemplified by the models for Lithium-ion batteries by Newman and co-workers. The overarching theme of this dissertation is thus the development and application of electrochemical modeling approaches at multiple scales in problems relevant to the abovementioned contexts. At the systems level, the development of more intelligent and powerful Battery Management Systems is enabled by fast electrochemical models, which must balance competing considerations of accuracy, computational efficiency, and ease of parameterization. To this end, we report a rigorous and generalized methodology for "upscaling" continuum electrochemical models. This approach, based on the visualization of a battery as Tanks-in-Series, has been demonstrated for both Lithium-ion and more complex Lithium-sulfur batteries. With respect to full models, voltage prediction errors below 20 mV are achieved for high-energy cells in most practical cases. 30 mV errors are achieved for aggressive conditions of high-rate operation at sub-zero ambient temperatures, illustrating their practical utility. This approach results in improved computational speed since each conservation law is replaced by a relatively simple volume-averaged differential or algebraic equation. For examples of large-scale problems, this leads to 10x savings in computation time over fast implementations of conventional models, illustrating competitiveness for real-time applications. In the development of next-generation chemistries, continuum models can serve as a framework for the analysis and interpretation of experimental data, while providing design guidance and helping determine desirable operating regimes. Electrochemical phenomena at different length and time scales are manifested during operation through voltage and temperature signatures, cycle life, and coulombic efficiency. Optimization of cell-level metrics is thus predicated on their correlation with the internal electrochemistry. This entails the integration of electrochemical models at different levels of detail in a computationally efficient and robust manner. To this end, the second half of this dissertation describes our efforts to develop a simulation framework for the modeling of Lithium-metal systems. We first describe a robust computational method to simulate Poisson Nernst Planck (PNP) models for Lithium symmetric cells characterized by thin double layers. This can be leveraged in applications where computational efficiency is of salience, such as cycling simulations and parameterization by coupling kinetic models of interest. This is demonstrated by a systems level method, enabling the quick evaluation of candidate mechanisms appropriately expressed as time-varying rate constants, making it useful for understanding the phenomena underpinning voltage transitions in Lithium symmetric cells. This is followed by a description of a preliminary electrochemical-mechanical model for Li metal interfaces, which is expected to serve as basis for more sophisticated electrochemical-mechanical models for Li metal systems operating under external pressure. We expect these approaches to advance fundamental understanding and design of Li-metal batteries, while creating accessible computational tools to complement experimental studies. Taken together, these contributions are envisaged to advance the knowledge base for model-based design as well as Battery Management Systems, particularly in anticipation of the commercialization of emerging battery chemistries.


Simulation of Battery Systems

Simulation of Battery Systems
Author: Farschad Torabi
Publisher: Academic Press
Total Pages: 430
Release: 2019-11-06
Genre: Science
ISBN: 0128165952

Download Simulation of Battery Systems Book in PDF, ePub and Kindle

Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. Includes carefully selected in-text problems, case studies and illustrative examples Features representative chapter-end problems, along with practical systems and applications Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases


Multiscale Simulation Approach for Battery Production Systems

Multiscale Simulation Approach for Battery Production Systems
Author: Malte Schönemann
Publisher: Springer
Total Pages: 187
Release: 2017-01-05
Genre: Technology & Engineering
ISBN: 3319493671

Download Multiscale Simulation Approach for Battery Production Systems Book in PDF, ePub and Kindle

Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.


Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
Author: Alejandro A. Franco
Publisher: Springer
Total Pages: 253
Release: 2015-11-12
Genre: Technology & Engineering
ISBN: 1447156773

Download Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage Book in PDF, ePub and Kindle

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.


Multiscale Modelling and Simulation

Multiscale Modelling and Simulation
Author: Sabine Attinger
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2004-07-12
Genre: Mathematics
ISBN: 9783540211808

Download Multiscale Modelling and Simulation Book in PDF, ePub and Kindle

In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.


Advances in Battery Manufacturing, Service, and Management Systems

Advances in Battery Manufacturing, Service, and Management Systems
Author: Jingshan Li
Publisher: John Wiley & Sons
Total Pages: 461
Release: 2016-09-20
Genre: Technology & Engineering
ISBN: 111906063X

Download Advances in Battery Manufacturing, Service, and Management Systems Book in PDF, ePub and Kindle

Addresses the methodology and theoretical foundation of battery manufacturing, service and management systems (BM2S2), and discusses the issues and challenges in these areas This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, operations, and hybrid storage systems to ensure overall performance and safety, as well as EV management. The contributors consist of experts from universities, industry research centers, and government agency. In addition, this book: Provides comprehensive overviews of lithium-ion battery and battery electrical vehicle manufacturing, as well as economic returns and government support Introduces integrated models for quality propagation and productivity improvement, as well as indicators for bottleneck identification and mitigation in battery manufacturing Covers models and diagnosis algorithms for battery SOC and SOH estimation, data-driven prognosis algorithms for predicting the remaining useful life (RUL) of battery SOC and SOH Presents mathematical models and novel structure of battery equalizers in battery management systems (BMS) Reviews the state of the art of battery, supercapacitor, and battery-supercapacitor hybrid energy storage systems (HESSs) for advanced electric vehicle applications Advances in Battery Manufacturing, Services, and Management Systems is written for researchers and engineers working on battery manufacturing, service, operations, logistics, and management. It can also serve as a reference for senior undergraduate and graduate students interested in BM2S2.