Programmable Photonics For Quantum And Classical Information Processing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Programmable Photonics For Quantum And Classical Information Processing PDF full book. Access full book title Programmable Photonics For Quantum And Classical Information Processing.

Programmable Photonics for Quantum and Classical Information Processing

Programmable Photonics for Quantum and Classical Information Processing
Author: Gregory R. Steinbrecher
Publisher:
Total Pages: 156
Release: 2019
Genre:
ISBN:

Download Programmable Photonics for Quantum and Classical Information Processing Book in PDF, ePub and Kindle

In this thesis, I explore the application of integrated photonic systems to quantum information processing as well as quantum and classical communications. The common thread throughout this work is the efficacy of variational numerical optimization in the design and optimization of photonic/bosonic systems. I present the programmable nanophotonic processor (PNP) platform that we developed, which is one way to realize an arbitrarily reconfigurable linear optics platform. I explore the prospects of realizing high fidelity quantum gates in this system, demonstrating through black box numerical optimization that we can compensate for a realistic model of fabrication error in the silicon photonics platform. Next, I discuss the design and construction of a next-generation PNP laboratory testbed, from the silicon photonics design up through the thermal and mechanical packaging, and the custom control and monitoring electronics. I discuss experiments using PNPs as a novel type of optical network switch, capable of both unicast and multicast operation, demonstrating its benefits in a small network testbed. Looking towards the future, I show that the integration of optical nonlinearities with PNPs would enable a quantum optical neural network (QONN) platform, demonstrating through simulation that these QONNs can be optimized to perform a variety of quantum and classical information processing tasks. I then expand the application of these systems from information processing to communications, showing that QONNs provide a natural platform to realize one-way quantum repeaters. Finally, I demonstrate the efficacy of the numerical techniques used in this thesis to a related system: cold atoms trapped in an optical lattice, the dynamics of which are similar to photons with interactions. We show that the optimization of the parameters of a simple one-dimensional model of this system can realize a universal gate set for quantum computing.


Programmable Integrated Photonics

Programmable Integrated Photonics
Author: José Capmany
Publisher:
Total Pages: 361
Release: 2020-02-21
Genre:
ISBN: 0198844409

Download Programmable Integrated Photonics Book in PDF, ePub and Kindle

This book provides the first comprehensive, up-to-date and self-contained introduction to the emergent field of Programmable Integrated Photonics (PIP). It covers both theoretical and practical aspects, ranging from basic technologies and the building of photonic component blocks, to designalternatives and principles of complex programmable photonic circuits, their limiting factors, techniques for characterization and performance monitoring/control, and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focusesmainly on the distinctive features of programmable photonics, as compared to more traditional ASPIC approaches.After some years during which the Application Specific Photonic Integrated Circuit (ASPIC) paradigm completely dominated the field of integrated optics, there has been an increasing interest in PIP. The rising interest in PIP is justified by the surge in a number of emerging applications that callfor true flexibility and reconfigurability, as well as low-cost, compact, and low-power consuming devices.Programmable Integrated Photonics is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming, can implement a variety of functionalities. These in turn can be exploited as basic operations in many application fields. Programmabilityenables, by means of external control signals, both chip reconfiguration for multifunction operation, as well as chip stabilization against non-ideal operations due to fluctuations in environmental conditions and fabrication errors. Programming also allows for the activation of parts of the chip,which are not essential for the implementation of a given functionality, but can be of help in reducing noise levels through the diversion of undesired reflections.


Large-scale Programmable Silicon Photonics for Quantum and Classical Machine Learning

Large-scale Programmable Silicon Photonics for Quantum and Classical Machine Learning
Author: Mihika Prabhu
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Large-scale Programmable Silicon Photonics for Quantum and Classical Machine Learning Book in PDF, ePub and Kindle

Photonic technologies provide many unique physical advantages including ultra-high bandwidths, energy-efficient operations, and low coupling to environmental noise. Furthermore, recent advances in foundry-based manufacturing platforms have enabled the emerging field of integrated systems photonics. In contrast to their bulk optics counterparts, these systems can co-integrate dense ensembles of active photonic and electronic components on a single wafer with high phase stability and small device footprints. Initial demonstrations of each element in the integrated photonics stack-sources, processors, and detectors-motivate the development of wafer-scale photonic integrated circuit implementations, which are poised to form a key building block for fundamental advancements in computing, communications, and sensing. The first part of this thesis will discuss the development and early system-level demonstrations of linear programmable nanophotonic processors in the silicon-on-insulator platform for applications in quantum and classical machine learning and information processing. Using our developed processor architecture, we then present a nanophotonic Ising sampler for noise-assisted combinatorial optimization. Subsequently, we present a novel, foundry-compatible platform for integrating telecommunication-wavelength artificial atom quantum emitters directly in silicon photonic circuits. Finally, we report a capacity analysis of a structured interferometric receiver implemented with a silicon photonic processor for detection of optical signals in photon-sparse communication links.


Photonic Computing Architectures for Classical and Quantum Information Processing

Photonic Computing Architectures for Classical and Quantum Information Processing
Author: Benjamin C Bartlett
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Photonic Computing Architectures for Classical and Quantum Information Processing Book in PDF, ePub and Kindle

As progress in traditional electronic computing systems approaches fundamental physical limits, we must explore alternative approaches for further growth in computing power. Photonics is a promising hardware platform for many emerging computing technologies, including optical neural networks and quantum computation. In this thesis, I will present several novel designs for light-based computing systems. First, I will discuss several advancements we have made in nanophotonic neural networks, including design and experimental realization of electro-optic nonlinear activation functions, and architectures and initialization routines for programmable linear optical devices. Next, I will present two novel schemes for quantum information processing: a programmable photonic gate array which can be dynamically reconfigured to prepare any quantum state, and an architecture for an optical quantum computer which can perform any calculation using only a single directly controllable qubit. Finally, I will discuss a design for a photonic quantum emulator capable of simulating the dynamics of a broad class of Hamiltonians in lattices with arbitrary dimensions and topologies.


Programmable Nanophotonics for Quantum Information Processing and Artificial Intelligence

Programmable Nanophotonics for Quantum Information Processing and Artificial Intelligence
Author: Nicholas Christopher Harris
Publisher:
Total Pages: 126
Release: 2017
Genre:
ISBN:

Download Programmable Nanophotonics for Quantum Information Processing and Artificial Intelligence Book in PDF, ePub and Kindle

Over the past decade, progress in digital electronic computing systems has slowed as traditional, transistor-based silicon technologies approach their scaling limits. Quantum computing and non-Von Neumann computing architectures have emerged as promising alternatives for continued computational advancement-garnering significant investment and public interest. As a hardware platform, silicon photonics may play an important role in enabling quantum and classical information processing architectures. Here, I will discuss my thesis work on developing a programmable nanophotonic processor in silicon, as well as applications of this processor within the fields of quantum simulation, quantum computing, and deep learning. I will also cover results on environment-assisted quantum transport, deep learning with coherent nanophotonics, heralded single-photon sources, and highly integrable superconducting nanowire single-photon detectors.


Quantum Continuous Variables

Quantum Continuous Variables
Author: Alessio Serafini
Publisher: CRC Press
Total Pages: 258
Release: 2017-07-20
Genre: Mathematics
ISBN: 1351645005

Download Quantum Continuous Variables Book in PDF, ePub and Kindle

Quantum Continuous Variables introduces the theory of continuous variable quantum systems, from its foundations based on the framework of Gaussian states to modern developments, including its applications to quantum information and forthcoming quantum technologies. This new book addresses the theory of Gaussian states, operations, and dynamics in great depth and breadth, through a novel approach that embraces both the Hilbert space and phase descriptions. The volume includes coverage of entanglement theory and quantum information protocols, and their connection with relevant experimental set-ups. General techniques for non-Gaussian manipulations also emerge as the treatment unfolds, and are demonstrated with specific case studies. This book will be of interest to graduate students looking to familiarise themselves with the field, in addition to experienced researchers eager to enhance their understanding of its theoretical methods. It will also appeal to experimentalists searching for a rigorous but accessible treatment of the theory in the area.


Quantum Photonics: Pioneering Advances and Emerging Applications

Quantum Photonics: Pioneering Advances and Emerging Applications
Author: Robert W. Boyd
Publisher: Springer
Total Pages: 646
Release: 2019-02-19
Genre: Science
ISBN: 3319984020

Download Quantum Photonics: Pioneering Advances and Emerging Applications Book in PDF, ePub and Kindle

This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.


Galileo Unbound

Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
Total Pages: 384
Release: 2018-07-12
Genre: Science
ISBN: 0192528505

Download Galileo Unbound Book in PDF, ePub and Kindle

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.


Towards Integrated Silicon Photonic Architectures for Quantum Information Processing

Towards Integrated Silicon Photonic Architectures for Quantum Information Processing
Author: Uttara Chakraborty (S.M.)
Publisher:
Total Pages: 69
Release: 2019
Genre:
ISBN:

Download Towards Integrated Silicon Photonic Architectures for Quantum Information Processing Book in PDF, ePub and Kindle

Silicon photonics is a highly-promising platform for on-chip quantum information processing. Linear optical quantum computing architectures necessitate the implementation of integrated single photon sources, passive and active optics, and single photon detectors. This thesis presents the development of a scalable, real-time feedback control protocol for stabilizing microring resonator frequencies in parallel with quantum computation using the same classical pump laser fields as are used to seed photon generation. The feedback protocol is applied to correct static and dynamic errors in silicon microring resonators due to fabrication variations and ambient fluctuations, and to demonstrate high-visibility two-photon quantum interference with photon pairs generated by spontaneous four wave mixing. Progress on a new interferometrically-coupled photon generation device for four-photon quantum interference is also presented. Finally, a new scheme is proposed for non-volatile phase shifters in large-scale photonic integrated circuits. The potential use of shape-memory materials for straining silicon waveguides to induce refractive index shifts is explored through finite-element simulations.


Quantum Computing

Quantum Computing
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 273
Release: 2019-04-27
Genre: Computers
ISBN: 030947969X

Download Quantum Computing Book in PDF, ePub and Kindle

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.