Production Of Pha Copolymers From Plant Oil PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Production Of Pha Copolymers From Plant Oil PDF full book. Access full book title Production Of Pha Copolymers From Plant Oil.

Production of PHA Copolymers from Plant Oil

Production of PHA Copolymers from Plant Oil
Author: Charles Forrester Budde
Publisher:
Total Pages: 222
Release: 2010
Genre:
ISBN:

Download Production of PHA Copolymers from Plant Oil Book in PDF, ePub and Kindle

Polyhydroxyalkanoates (PHAs) are carbon storage polymers produced by a variety of bacteria. The model organism for studying PHA synthesis and accumulation is Ralstonia eutropha. This species can be used to convert renewable resources into PHA bioplastics, which can serve as biodegradable alternatives to traditional petrochemical plastics. A promising feedstock for PHA production is palm oil, a major agricultural product in Southeast Asia. Strains of R. eutropha were engineered to accumulate high levels of a PHA copolymer containing 3-hydroxybutyrate and 3-hydroxyhexanoate when grown on palm oil and other plant oils. This type of PHA has mechanical properties similar to those of common petrochemical plastics. The engineered strains expressed a PHA synthase gene from the bacterial species Rhodococcus aetherivorans I24. The amount of 3-hydroxyhexanoate in the PHA was controlled by modulating the level of acetoacetyl-CoA reductase (PhaB) activity in the engineered R. eutropha strains. Whole genome microarray studies were carried out to better understand R. eutropha gene expression during growth on plant oils. These results have provided insights that will allow for additional improvements to be made to the engineered strains. In order to study growth of R. eutropha strains on plant oils, fermentation methods were developed to grow the bacteria in oil medium and measure consumption of the carbon source. In one of these methods, the glycoprotein gum arabic was used to emulsify the plant oil. This emulsification reduced the lag phase in oil cultures and allowed representative samples to be taken early in experiments. High density palm oil fermentations were also carried out using unemulsified oil, which is more representative of industrial culture conditions. Techniques were developed for recovery of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) from R. eutropha biomass. Methyl isobutyl ketone was used to extract the PHA, and the polymer was precipitated from solution by addition of an alkane. A process model based on this procedure was developed for continuous recovery of PHA. The results described in this thesis include several advancements towards the goal of industrial PHA production from palm oil.


The Handbook of Polyhydroxyalkanoates, Three Volume Set

The Handbook of Polyhydroxyalkanoates, Three Volume Set
Author: Martin Koller
Publisher: CRC Press
Total Pages: 1416
Release: 2020-11-06
Genre: Medical
ISBN: 1000173593

Download The Handbook of Polyhydroxyalkanoates, Three Volume Set Book in PDF, ePub and Kindle

The Handbook of Polyhydroxyalkanoates (PHA) focusses on and addresses varying facets of PHA biosynthesis and processing, spread across three volumes. The first volume discusses feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. This second volume focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Third volume is on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this set: Presents comprehensive and holistic consideration of these microbial bioplastics in the volumes. Enables reader to learn about microbiological, enzymatic, genetic, synthetic biology, and metabolic aspects of PHA biosynthesis based on the latest scientific discoveries. Discusses design and operate a PHA production plant. Strong focus on post-synthetic modification, preparation of functional PHA and follow-up products, and PHA processing. Covers all related engineering considerations


Microbial Biopolyester Production, Performance and Processing Bioengineering, Characterization, and Sustainability

Microbial Biopolyester Production, Performance and Processing Bioengineering, Characterization, and Sustainability
Author: Martin Koller
Publisher: Bentham Science Publishers
Total Pages: 523
Release: 2016-12-06
Genre: Science
ISBN: 1681083736

Download Microbial Biopolyester Production, Performance and Processing Bioengineering, Characterization, and Sustainability Book in PDF, ePub and Kindle

Global plastic production is estimated to be over 300Mt annually. Most conventional plastics are predominantly produced from fossil fuels and are highly resistant to biodegradation, and only a small share of about 20% of spent plastics is believed to be recycled, which is a cause for environmental concern. Biodegradable plastics would solve this concern as they are a sustainable alternative, yet these do not even cover 5% of the global plastic market. Microbial polyhydroxyalkanoates (PHAs) are a versatile group of polyesters produced by nature as prokaryotic storage materials. PHAs can be produced through sustainable bioprocess engineering and have displayed remarkable flexibility in their physical and chemical properties. PHAs are the subject of several scientific papers and numerous PHA patents have also been filed, generating significant interest in the plastic production industry. To develop overall sustainable and efficient production processes, all bioprocess steps need to be thoroughly understood and accounted for. These processes start with the selection of suitable inexpensive raw materials (microbes and enzymes), optimizing the process engineering and process regime, and conclude with the enhancement of product recovery in terms of time, energy, and material input. Microbial Biopolyester Production, Performance and Processing: Bioengineering, Characterization, and Sustainability is a compilation of eight chapters covering bacterial polyesters, green plastics and PHAs from various angles. The contents of this volume focus on sustainable practices focus on the sustainability of processes that involve the synthesis and recycling of these meterials. The volume is a useful resource for bioprocess engineers, microbiologists, biotechnologists and chemical engineers interested in the basics of biodegradable plastic production.


Plastics from Bacteria

Plastics from Bacteria
Author: George Guo-Qiang Chen
Publisher: Springer Science & Business Media
Total Pages: 453
Release: 2009-12-02
Genre: Science
ISBN: 3642032877

Download Plastics from Bacteria Book in PDF, ePub and Kindle

Due to the possibility that petroleum supplies will be exhausted in the next decades to come, more and more attention has been paid to the production of bacterial pl- tics including polyhydroxyalkanoates (PHA), polylactic acid (PLA), poly(butylene succinate) (PBS), biopolyethylene (PE), poly(trimethylene terephthalate) (PTT), and poly(p-phenylene) (PPP). These are well-studied polymers containing at least one monomer synthesized via bacterial transformation. Among them, PHA, PLA and PBS are well known for their biodegradability, whereas PE, PTT and PPP are probably less biodegradable or are less studied in terms of their biodegradability. Over the past years, their properties and appli- tions have been studied in detail and products have been developed. Physical and chemical modifications to reduce their cost or to improve their properties have been conducted. PHA is the only biopolyester family completely synthesized by biological means. They have been investigated by microbiologists, molecular biologists, b- chemists, chemical engineers, chemists, polymer experts, and medical researchers for many years. PHA applications as bioplastics, fine chemicals, implant biomate- als, medicines, and biofuels have been developed. Companies have been est- lished for or involved in PHA related R&D as well as large scale production. It has become clear that PHA and its related technologies form an industrial value chain in fermentation, materials, feeds, and energy to medical fields.


Biopolyesters

Biopolyesters
Author: Wolfgang Babel
Publisher: Springer
Total Pages: 345
Release: 2003-07-01
Genre: Technology & Engineering
ISBN: 3540400214

Download Biopolyesters Book in PDF, ePub and Kindle

Living systems synthesize seven different classes of polymers. They provide structure and form for cells and organisms, function as catalysts and energy storage and carry the genetic information. All these polymers possess technically interesting properties. Some of these biopolymers are already used commercially. This special volume of Advances in Biochemical Engineering/Biotechnology comprises 10 chapters. It gives an overview of the water insoluble biopolyesters, in particular of the microbially synthesized poly-hydroxyalkanoate (PHA) family. It reports the state of the art of metabolism, regulation and genetic background, the latest advances made in genetic optimization of bacteria, "construction" of transgenic plants and in vitro synthesis by means of purified enzymes. Furthermore, it describes relevant technologies and evaluates perspectives concerning increasing the economic viability and competitiveness of PHA and discusses applications in medicine, packaging, food and other fields.


Transgenic Plant Research

Transgenic Plant Research
Author: Alan R. Lindsey
Publisher: Routledge
Total Pages: 304
Release: 2022-01-27
Genre: Science
ISBN: 135140718X

Download Transgenic Plant Research Book in PDF, ePub and Kindle

This text is split into four main sections: gene transfer techniques; transgenic approaches to gene isolation; manipulation of plant development, biochemistry and physiology; and predictability of transgene expression.


Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics

Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics
Author: Kumar Sudesh
Publisher: Springer Science & Business Media
Total Pages: 137
Release: 2012-10-11
Genre: Science
ISBN: 364233539X

Download Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics Book in PDF, ePub and Kindle

The environmental problems caused by petroleum-based plastic and plastic waste have led to an increasing demand for biobased and biodegradable plastics, such as polyhydroxyalkanoates (PHAs). These polyesters are synthesized from carbon sources, e.g. sugar and plant oils, by various bacteria. This book highlights the potential of plant oils, especially palm oil, as a feedstock for PHA production. In addition, new PHA applications are discussed and the sustainability of PHA production from plant oils is critically examined.


Advances in Polyhydroxyalkanoate (PHA) Production

Advances in Polyhydroxyalkanoate (PHA) Production
Author: Martin Koller
Publisher: MDPI
Total Pages: 259
Release: 2018-03-23
Genre: Science
ISBN: 3038426377

Download Advances in Polyhydroxyalkanoate (PHA) Production Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Advances in Polyhydroxyalkanoate (PHA) Production" that was published in Bioengineering


The Handbook of Polyhydroxyalkanoates

The Handbook of Polyhydroxyalkanoates
Author: Martin Koller
Publisher: CRC Press
Total Pages: 453
Release: 2020-11-05
Genre: Medical
ISBN: 1000173577

Download The Handbook of Polyhydroxyalkanoates Book in PDF, ePub and Kindle

The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis