Probability And Statistics In Geodesy And Geophysics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Probability And Statistics In Geodesy And Geophysics PDF full book. Access full book title Probability And Statistics In Geodesy And Geophysics.

Probability and Statistics in Geodesy and Geophysics

Probability and Statistics in Geodesy and Geophysics
Author: Ludmila Kubáčková
Publisher: Elsevier Publishing Company
Total Pages: 448
Release: 1987
Genre: Science
ISBN:

Download Probability and Statistics in Geodesy and Geophysics Book in PDF, ePub and Kindle

The purpose of data processing is to obtain in explicit form maximum information on the object of the data measurements. This is accomplished by the use of suitable models based on the most up-to-date knowledge of the theory of probability and mathematical statistics. The need to constantly improve models for processing data sets is stimulated by the rapid development of geodetic and geophysical measurement techniques on the one hand and the possibilities of contemporary computer techniques on the other. The reasons for the incessant improvement of mathematical models are both gnostic and economic; experiments in particular are time-consuming and expensive to prepare and carry out; moreover, they may be unique and impossible to repeat. To develop an effective method for preparing such experiments and a correct procedure for processing the results is a theoretically exacting, although least costly, part of the whole process of preparation, realization and the evaluation of the measurements. The purpose of this book is to acquaint the reader with the mathematical methods in use at present, including those being developed and applied in advanced geodetic and geophysical centres.


Geodetic Time Series Analysis in Earth Sciences

Geodetic Time Series Analysis in Earth Sciences
Author: Jean-Philippe Montillet
Publisher: Springer
Total Pages: 422
Release: 2019-08-16
Genre: Science
ISBN: 3030217183

Download Geodetic Time Series Analysis in Earth Sciences Book in PDF, ePub and Kindle

This book provides an essential appraisal of the recent advances in technologies, mathematical models and computational software used by those working with geodetic data. It explains the latest methods in processing and analyzing geodetic time series data from various space missions (i.e. GNSS, GRACE) and other technologies (i.e. tide gauges), using the most recent mathematical models. The book provides practical examples of how to apply these models to estimate seal level rise as well as rapid and evolving land motion changes due to gravity (ice sheet loss) and earthquakes respectively. It also provides a necessary overview of geodetic software and where to obtain them.


Statistical Methods of Geophysical Data Processing

Statistical Methods of Geophysical Data Processing
Author: Vladimir Troyan
Publisher: World Scientific
Total Pages: 454
Release: 2010
Genre: Science
ISBN: 981429375X

Download Statistical Methods of Geophysical Data Processing Book in PDF, ePub and Kindle

This textbook contains a consideration of the wide field of problems connected with statistical methods of processing of observed data, with the main examples and considered models related to geophysics and seismic exploration. This textbook will be particularly helpful to students and professionals from various fields of physics, connected with an estimation of the parameters of the physical objects by experimental data. The reader can also find many important topics, which are the basis for statistical methods of estimation and inverse problem solutions.


Spectral Methods in Geodesy and Geophysics

Spectral Methods in Geodesy and Geophysics
Author: Christopher Jekeli
Publisher: CRC Press
Total Pages: 431
Release: 2017-10-02
Genre: Mathematics
ISBN: 1482245264

Download Spectral Methods in Geodesy and Geophysics Book in PDF, ePub and Kindle

The text develops the principal aspects of applied Fourier analysis and methodology with the main goal to inculcate a different way of perceiving global and regional geodetic and geophysical data, namely from the perspective of the frequency, or spectral, domain rather than the spatial domain. The word "methods" in the title is meant to convey that the transformation of a geophysical signal into the spectral domain can be applied for purposes of analysis as well as rapid computation. The text is written for graduate students; however, Chapters 1 through 4 and parts of 5 can also benefit undergraduates who have a solid and fluent knowledge of integral and differential calculus, have some statistical background, and are not uncomfortable with complex numbers. Concepts are developed by starting from the one-dimensional domain and working up to the spherical domain, which is part of every chapter. Many concepts are illustrated graphically with actual geophysical data primarily from signals of gravity, magnetism, and topography.


Survey Control Points

Survey Control Points
Author: Gabriel Weiss
Publisher: Springer
Total Pages: 124
Release: 2015-12-29
Genre: Science
ISBN: 3319284576

Download Survey Control Points Book in PDF, ePub and Kindle

This work deals with the issue of geodetic network structures, i.e. methods of verifying the condition of existing geodetic controls in terms of their compatibility and thereby their applicability. The presented work addresses these problems only for geodetic controls on a local scale. This is a common surveying issue in a number of countries, especially where there are concerns about the quality of the structure and homogeneity of national spatial and triangulation networks. There is a need for verification, not only for the use of terrestrial methods of determination of points but also for other surveying technology, since all technology operates with a certain threshold accuracy and using physical marks located on an unstable earth surface as survey control points. Issues of the compatibility of points whose coordinates are defined as functions of time by specific equations with respect to basal positions of points at certain epochs (points in systems ITRS, ETRS and others) are not considered.


Geodesy

Geodesy
Author: P. Vanícek
Publisher: Elsevier
Total Pages: 714
Release: 2015-06-03
Genre: Science
ISBN: 1483290794

Download Geodesy Book in PDF, ePub and Kindle

Geodesy: The Concepts, Second Edition focuses on the processes, approaches, and methodologies employed in geodesy, including gravity field and motions of the earth and geodetic methodology. The book first underscores the history of geodesy, mathematics and geodesy, and geodesy and other disciplines. Discussions focus on algebra, geometry, statistics, symbolic relation between geodesy and other sciences, applications of geodesy, and the historical beginnings of geodesy. The text then ponders on the structure of geodesy, as well as functions of geodesy and geodetic theory and practice. The publication examines the motions, gravity field, deformations in time, and size and shape of earth. Topics include tidal phenomena, tectonic deformations, actual shape of the earth, gravity anomaly and potential, and observed polar motion and spin velocity variations. The elements of geodetic methodology, classes of mathematical models, and formulation and solving of problems are also mentioned. The text is a dependable source of data for readers interested in the concepts involved in geodesy.


Applications of Linear and Nonlinear Models

Applications of Linear and Nonlinear Models
Author: Erik W. Grafarend
Publisher: Springer Nature
Total Pages: 1127
Release: 2022-10-01
Genre: Science
ISBN: 3030945987

Download Applications of Linear and Nonlinear Models Book in PDF, ePub and Kindle

This book provides numerous examples of linear and nonlinear model applications. Here, we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view and a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss–Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters, we concentrate on underdetermined and overdetermined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE, and total least squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so-called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann–Plucker coordinates, criterion matrices of type Taylor–Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overjet. This second edition adds three new chapters: (1) Chapter on integer least squares that covers (i) model for positioning as a mixed integer linear model which includes integer parameters. (ii) The general integer least squares problem is formulated, and the optimality of the least squares solution is shown. (iii) The relation to the closest vector problem is considered, and the notion of reduced lattice basis is introduced. (iv) The famous LLL algorithm for generating a Lovasz reduced basis is explained. (2) Bayes methods that covers (i) general principle of Bayesian modeling. Explain the notion of prior distribution and posterior distribution. Choose the pragmatic approach for exploring the advantages of iterative Bayesian calculations and hierarchical modeling. (ii) Present the Bayes methods for linear models with normal distributed errors, including noninformative priors, conjugate priors, normal gamma distributions and (iii) short outview to modern application of Bayesian modeling. Useful in case of nonlinear models or linear models with no normal distribution: Monte Carlo (MC), Markov chain Monte Carlo (MCMC), approximative Bayesian computation (ABC) methods. (3) Error-in-variables models, which cover: (i) Introduce the error-in-variables (EIV) model, discuss the difference to least squares estimators (LSE), (ii) calculate the total least squares (TLS) estimator. Summarize the properties of TLS, (iii) explain the idea of simulation extrapolation (SIMEX) estimators, (iv) introduce the symmetrized SIMEX (SYMEX) estimator and its relation to TLS, and (v) short outview to nonlinear EIV models. The chapter on algebraic solution of nonlinear system of equations has also been updated in line with the new emerging field of hybrid numeric-symbolic solutions to systems of nonlinear equations, ermined system of nonlinear equations on curved manifolds. The von Mises–Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter is devoted to probabilistic regression, the special Gauss–Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra, and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger algorithm, especially the C. F. Gauss combinatorial algorithm.


Patterns Identification and Data Mining in Weather and Climate

Patterns Identification and Data Mining in Weather and Climate
Author: Abdelwaheb Hannachi
Publisher: Springer Nature
Total Pages: 600
Release: 2021-05-06
Genre: Science
ISBN: 3030670732

Download Patterns Identification and Data Mining in Weather and Climate Book in PDF, ePub and Kindle

Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes. The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last 15 years. - Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A. Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area. - Maarten Ambaum, Department of Meteorology, University of Reading, U.K. This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field. - Frank Kwasniok, College of Engineering, University of Exeter, U.K.