Principles Of Electron Tunneling Spectroscopy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Principles Of Electron Tunneling Spectroscopy PDF full book. Access full book title Principles Of Electron Tunneling Spectroscopy.

Principles of Electron Tunneling Spectroscopy

Principles of Electron Tunneling Spectroscopy
Author: E. L. Wolf
Publisher: Oxford University Press
Total Pages: 617
Release: 2012
Genre: Literary Collections
ISBN: 0199589496

Download Principles of Electron Tunneling Spectroscopy Book in PDF, ePub and Kindle

Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.


Principles of Electron Tunneling Spectroscopy

Principles of Electron Tunneling Spectroscopy
Author: E. L. Wolf
Publisher: Oxford University Press, USA
Total Pages: 600
Release: 1985
Genre: Language Arts & Disciplines
ISBN:

Download Principles of Electron Tunneling Spectroscopy Book in PDF, ePub and Kindle

This book provides a comprehensive and up-to-date treatment of solid state electron tunneling phenomena, with emphasis on their systematic application in junction devices to probe electronic and vibrational properties of superconductors, normal metals, semiconductors, and thin insulating barrier layers. The quantum-mechanical foundations of the subject are traced, and the most active areas of tunneling research are covered in a uniform and coherent manner. A thorough treatment of experimental techniques in tunneling research is provided, along with an introduction to the relevant techniques of data analysis.


Atomic and Molecular Manipulation

Atomic and Molecular Manipulation
Author:
Publisher: Elsevier
Total Pages: 190
Release: 2011-07-13
Genre: Technology & Engineering
ISBN: 0080963560

Download Atomic and Molecular Manipulation Book in PDF, ePub and Kindle

Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic scale", and "Chemistry at the atomic scale". This book aims to illustrate the main aspects of this ongoing scientific adventure and to anticipate the major challenges for the future in "Atomic and molecular manipulation" from fundamental knowledge to the fabrication of atomic-scale devices. Provides a broad overview of the field to aid those new and entering into this research area Presents a review of the historical development and evolution of the field Offers a clear personalized view of current scanning probe microscopy research from world experts


Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)

Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)
Author: Elke Scheer
Publisher: World Scientific
Total Pages: 846
Release: 2017-05-19
Genre: Technology & Engineering
ISBN: 9813226048

Download Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition) Book in PDF, ePub and Kindle

Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.


Scanning Probe Microscopy

Scanning Probe Microscopy
Author: Roland Wiesendanger
Publisher: Springer Science & Business Media
Total Pages: 238
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 3662036061

Download Scanning Probe Microscopy Book in PDF, ePub and Kindle

Scanning Probe Microscopy - Analytical Methods provides a comprehensive overview of the analytical methods on the nanometer scale based on scanning probe microscopy and spectroscopy. Numerous examples of applications of the chemical contrast mechanism down to the atomic scale in surface physics and chemistry are discussed with extensive references to original work in the recent literature.


Molecular Electronics

Molecular Electronics
Author: Juan Carlos Cuevas
Publisher: World Scientific
Total Pages: 724
Release: 2010
Genre: Science
ISBN: 9814282596

Download Molecular Electronics Book in PDF, ePub and Kindle

1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?


Adhesion in Microelectronics

Adhesion in Microelectronics
Author: K. L. Mittal
Publisher: John Wiley & Sons
Total Pages: 293
Release: 2014-08-25
Genre: Technology & Engineering
ISBN: 1118831349

Download Adhesion in Microelectronics Book in PDF, ePub and Kindle

This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesion Surface (physical or chemical) characterization of materials as it pertains to adhesion Surface cleaning as it pertains to adhesion Ways to improve adhesion Unraveling of interfacial interactions using an array of pertinent techniques Characterization of interfaces / interphases Polymer-polymer adhesion Metal-polymer adhesion (metallized polymers) Polymer adhesion to various substrates Adhesion of thin films Adhesion of underfills Adhesion of molding compounds Adhesion of different dielectric materials Delamination and reliability issues in packaged devices Interface mechanics and crack propagation Adhesion measurement of thin films and coatings