Plasmonic Metamaterials For Active And Passive Light Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Plasmonic Metamaterials For Active And Passive Light Control PDF full book. Access full book title Plasmonic Metamaterials For Active And Passive Light Control.

Plasmonic Metamaterials for Active and Passive Light Control

Plasmonic Metamaterials for Active and Passive Light Control
Author: Danyong Dylan Lu
Publisher:
Total Pages: 112
Release: 2014
Genre:
ISBN: 9781321234145

Download Plasmonic Metamaterials for Active and Passive Light Control Book in PDF, ePub and Kindle

Fundamental study on plasmonics excites surface plasmons opening possibility for stronger light-matter interaction at nanoscales and optical frequencies. On the other hand, metamaterials, known as artificial materials built with designable subwavelength units, offer unprecedented new material properties not existing in nature. By combining unique advantages in these two areas, plasmonic metamaterials gain tremendous momentum for fundamental research interest and potential practical applications through the active and passive interaction with and control of light. This thesis is focused on the theoretical and experimental study of plasmonic metamaterials with tunable plasmonic properties, and their applications in controlling spontaneous emission process of quantum emitters, and manipulating light propagation, scattering and absorption. To break the limitation of surface plasmon properties by existing metal materials, composite- and multilayer-based metamaterials are investigated and their tunable plasmonic properties are demonstrated. Nanopatterned multilayer metamaterials with hyperbolic dispersion relations are further utilized to enhance spontaneous emission rates of molecules at desired frequencies with improved far-field radiative power through the Purcell effect. Theoretical calculations and experimental lifetime characterizations show the tunable broadband Purcell enhancement of 76 fold on the hyperbolic metamaterials that better aligns with spontaneous emission spectra and the emission intensity improvement of 80 fold achieved by the out-coupling effect of nanopatterns. This concept is later applied to quantum-well light emitting devices for improving the light efficiency and modulation speed at blue and green wavelengths. On the passive light manipulation, in contrast to strong plasmonic scattering from metal patterns, anomalously weak scattering by patterns in multilayer hyperbolic metamaterials is observed and experimentally demonstrated to be insensitive to pattern sizes, shapes and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes and opto-electric devices. Lastly, the concept of metamaterials is also extended to selective control of light absorption and reflection for potential solar energy applications. A high-performance spectrally selective coating based on multi-scaled metamaterials is designed and fabricated with 90-95% solar absorptivity and


Active Plasmonics and Tuneable Plasmonic Metamaterials

Active Plasmonics and Tuneable Plasmonic Metamaterials
Author: Anatoly V. Zayats
Publisher: John Wiley & Sons
Total Pages: 266
Release: 2013-05-22
Genre: Science
ISBN: 111863442X

Download Active Plasmonics and Tuneable Plasmonic Metamaterials Book in PDF, ePub and Kindle

This book, edited by two of the most respected researchers in plasmonics, gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.


Plasmonics and Plasmonic Metamaterials

Plasmonics and Plasmonic Metamaterials
Author: G. Shvets
Publisher: World Scientific
Total Pages: 469
Release: 2012
Genre: Science
ISBN: 9814355283

Download Plasmonics and Plasmonic Metamaterials Book in PDF, ePub and Kindle

Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions


Active Plasmonics and Metamaterials

Active Plasmonics and Metamaterials
Author: Mohamed ElKabbash
Publisher:
Total Pages: 186
Release: 2017
Genre: Metamaterials
ISBN:

Download Active Plasmonics and Metamaterials Book in PDF, ePub and Kindle

The past two decades has seen considerable interest in Plasmonics and Metamaterials (P & MM); two intertwined fields of research. The interest is driven by matured nano-fabrication and characterization technologies and the limitations facing traditional photonics. While light cannot be squeezed beyond the diffraction limit, extreme light-matter interactions enabled the manipulation of light at length-scales much shorter than the wavelength of light. The prospects of plasmonics and metamaterials include subwavelength nano-photonic interconnects and circuits, light harvesting and solar energy, enhancement of linear and non-linear optical processes, sensing, ultrathin optical displays, structural coloring and quantum information and communication.The field of plasmonics studies all aspects related to structures that can support plasmons; oscillations of free electrons in metals. From this perspective, one can consider plasmonics as the field of metal photonics that studies light-metal interaction in the optical range. Metals are not subject to the diffraction limit since light is confined by coupling to electron oscillations, or plasmons, in the metal. Electromagnetic (EM) field can thus be confined on length scales comparable to the dimensions of the metallic nanostructure. On the other hand, Metamaterials are engineered materials that enjoy optical properties and functionalities beyond what natural materials can provide. Usually metamaterials are composed of different materials or structures that interact with light resulting in an emergent property due to the interplay of all the component materials and/or structures. In the optical range (visible and NIR), metamaterials heavily rely on metallic nano-structures as they allow for strong light-matter interaction at the sub-wavelength range. The strong field localization, however, comes at a cost; electrons scatter and absorb the localized field at the femtosecond timescale. The problem of strong optical losses in plasmonics and metamaterials with metal components is the major obstacle in applications and devices that require high efficiency, e.g. perfect lenses, clocking devices, and plasmonic transistors and interconnects. The confinement-loss tradeoff is what defines the future of P & MM [1]. As the field of plasmonics and metamaterials mature, the possible applications are adapting to the fundamental limitations of metal photonic materials. In addition to traditional, low efficiency applications of plasmonics, e.g., surface enhanced Raman spectroscopy (SERS), other applications that does not require high efficiency, e.g., metal enhanced fluorescence and plasmonic rulers are promising. Furthermore, losses can be desirable in applications that require strong light absorption and/or heat generation such as thermo-photovoltaics, solar energy generation, thermal emitters, optical absorbers and structural coloring, cancer photo-thermal therapy, and heat assisted magnetic recording.Between low efficiency applications and applications where losses are desirable, one can envision a wide array of applications where the benefits of field confinement out-weigh the losses. In particular, an important consequence of strong field confinement is that changes in the surrounding EM environment can induce a strong change in the optical properties of a P & MM system. Such changes would result in an ultrafast, sub-nanosecond, response that can be useful in many applications. An active P & MM system is one where the existence of an external mechanical, electrical, thermal or optical stimulus modifies the system’s light-matter interaction. This thesis aims to explore various active P & MM systems. To design an active system one needs first to create a passive system that enjoys a certain feature which is a function of the EM environment. By introducing a change in the EM environment, we obtain a measurable change in the passive feature. The first part deals with active plasmonics, particularly, gain-plasmon dynamics. We study the ultrafast dynamics of gain-plasmon interaction and reveal an active plasmonic system where the spontaneous emission rate of a quantum emitter is dynamically modulated. The main objective of this thesis is to slightly uncover the richness of P & MM despite the existence of strong losses and beyond the traditional or loss-based applications. The second part of the thesis deals with metamaterials that exhibit tunable, strong to perfect light absorption and their application in hydrogen gas sensing as an example for their optical activity.


Information Metamaterials

Information Metamaterials
Author: Tie Jun Cui
Publisher: Cambridge University Press
Total Pages: 189
Release: 2021-02-18
Genre: Technology & Engineering
ISBN: 1108960561

Download Information Metamaterials Book in PDF, ePub and Kindle

Metamaterials have attracted enormous interests from both physics and engineering communities in the past 20 years, owing to their powerful ability in manipulating electromagnetic waves. However, the functionalities of traditional metamaterials are fixed at the time of fabrication. To control the EM waves dynamically, active components are introduced to the meta-atoms, yielding active metamaterials. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, are proposed, which can achieve dynamically controllable functionalities using field programmable gate array (FPGA). Most importantly, the digital coding representations of metamaterials set up a bridge between the digital world and physical world, and allow metamaterials to process digital information directly, leading to information metamaterials. In this Element, we review the evolution of information metamaterials, mainly focusing on their basic concepts, design principles, fabrication techniques, experimental measurement and potential applications. Future developments of information metamaterials are also envisioned.


Controlling Light with Light

Controlling Light with Light
Author: Luke Harrison Nicholls
Publisher:
Total Pages:
Release: 2019
Genre:
ISBN:

Download Controlling Light with Light Book in PDF, ePub and Kindle


Electromagnetic Vortices

Electromagnetic Vortices
Author: Zhi Hao Jiang
Publisher: John Wiley & Sons
Total Pages: 498
Release: 2021-12-29
Genre: Science
ISBN: 1119662826

Download Electromagnetic Vortices Book in PDF, ePub and Kindle

Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.


Phenomena of Optical Metamaterials

Phenomena of Optical Metamaterials
Author: Ortwin Hess
Publisher: Elsevier
Total Pages: 277
Release: 2018-10-12
Genre: Science
ISBN: 0128138971

Download Phenomena of Optical Metamaterials Book in PDF, ePub and Kindle

Phenomena of Optical Metamaterials provides an overview of phenomena enabled by artificial and designed metamaterials and their application for photonic devices. The book explores the study of active metamaterials with tunable and switchable properties and novel functionalities, such as the control of spontaneous emission and enhancement. Topics addressed cover theory, modelling and design, applications in practical devices, fabrication, characterization, and measurement, thus helping readers understand and develop new artificial, functional materials. Addresses disorder in metamaterials from the perspective of different viewpoints Introduces basic metamaterial modelling approaches and phenomena enabled by metamaterials Discusses the latest advances in metamaterials, including hyperbolic metamaterials, disorder in metamaterials, active metamaterials, quantum and atomic metamaterials