Physics Based And Data Driven Mulitiscale Modeling Of The Structural Formation In Macromolecular Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Physics Based And Data Driven Mulitiscale Modeling Of The Structural Formation In Macromolecular Systems PDF full book. Access full book title Physics Based And Data Driven Mulitiscale Modeling Of The Structural Formation In Macromolecular Systems.

Physics-Based and Data-Driven Mulitiscale Modeling of the Structural Formation in Macromolecular Systems (Band 25)

Physics-Based and Data-Driven Mulitiscale Modeling of the Structural Formation in Macromolecular Systems (Band 25)
Author: Philipp Nicolas Depta
Publisher: Cuvillier Verlag
Total Pages: 297
Release: 2024-02-27
Genre:
ISBN: 3736969724

Download Physics-Based and Data-Driven Mulitiscale Modeling of the Structural Formation in Macromolecular Systems (Band 25) Book in PDF, ePub and Kindle

In order to improve knowledge on macromolecular structural formation and self-assembly, this work proposes a physics-based and data-driven multiscale modeling framework capable of describing structural formation on micro-meter and milli-second scales near molecular-level precision. The framework abstracts macromolecules as anisotropic unit objects and models the interactions and environment using data-driven approaches. The models are parameterized in a bottom-up fashion and validated top-down by comparison with literature and collaborator data for self-assembly of three model system: alginate gelation, hepatitis B virus capsids, and the pyruvate dehydrogenase complex.


Fundamentals of Multiscale Modeling of Structural Materials

Fundamentals of Multiscale Modeling of Structural Materials
Author: Wenjie Xia
Publisher: Elsevier
Total Pages: 450
Release: 2022-11-26
Genre: Technology & Engineering
ISBN: 0128230533

Download Fundamentals of Multiscale Modeling of Structural Materials Book in PDF, ePub and Kindle

Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered Discusses the integration of multiscale modeling and artificial intelligence


Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations

Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations
Author: Valentina Tozzini
Publisher: Frontiers Media SA
Total Pages: 235
Release: 2020-10-27
Genre: Science
ISBN: 2889661091

Download Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations Book in PDF, ePub and Kindle

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Multiphysics and Multiscale Modeling

Multiphysics and Multiscale Modeling
Author: Young W. Kwon
Publisher: CRC Press
Total Pages: 442
Release: 2015-10-05
Genre: Science
ISBN: 1498782523

Download Multiphysics and Multiscale Modeling Book in PDF, ePub and Kindle

Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body


Molecular Modeling and Multiscaling Issues for Electronic Material Applications

Molecular Modeling and Multiscaling Issues for Electronic Material Applications
Author: Artur Wymyslowski
Publisher: Springer
Total Pages: 203
Release: 2014-11-20
Genre: Technology & Engineering
ISBN: 3319128620

Download Molecular Modeling and Multiscaling Issues for Electronic Material Applications Book in PDF, ePub and Kindle

This book offers readers a snapshot of the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand materials to solve relevant issues in this field. The reader is introduced to the evolving role of molecular modeling, especially seen from the perspective of the IEEE community and modeling in electronics. This book also covers the aspects of molecular modeling needed to understand the relationship between structures and mechanical performance of materials. The authors also discuss the transitional topic of multiscale modeling and recent developments on the atomistic scale and current attempts to reach the submicron scale, as well as the role that quantum mechanics can play in performance prediction.


Multiscale Modeling and Deep Learning: Reverse-mapping of Condensed-phase Molecular Structures

Multiscale Modeling and Deep Learning: Reverse-mapping of Condensed-phase Molecular Structures
Author: Marc Stieffenhofer
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Multiscale Modeling and Deep Learning: Reverse-mapping of Condensed-phase Molecular Structures Book in PDF, ePub and Kindle

Molecular processes can be studied at various levels of resolution that range from the fundamental, quantum mechanical description of electronic degrees of freedom up to the classical thermodynamic description of macroscopic quantities. For many systems, and in particular for those incorporating macromolecules, a single model is not able to capture all the relevant length- and timescales to thoroughly study a phenomena of interest. Multiscale modeling (MM) offers a solution by combining molecular models at different resolutions to address phenomena at multiple scales. On the low-resolution end, coarse-grained (CG) models are deployed to study the large-scale behavior of the system. These CG models are constructed by averaging over atomistic degrees of freedom. Their low resolution reduces the computational effort of the simulation and enables a faster exploration of configuration space. In addition to coarse-graining, a tight and consistent link between models of different resolutions calls for a reverse-mapping capable of reintroducing degrees of freedom as well. Reverse-mapping is routinely applied in the MM community, for example to compare simulation results with experimental data, to rigorously analyze the simulation results on a local scale, or to assess the stability and accuracy of the obtained CG structures. At the heart of this work is the development of deepbackmap (DBM), an approach for the reverse-mapping of condensed-phase molecular structures. The new method is based on machine learning (ML), a study of computer algorithms that use data to construct statistical models. Traditional schemes start from a rough coarse-to-fine mapping, which requires further energy minimization and subsequent molecular dynamics simulations to equilibrate the system. DBM directly predicts equilibrated molecular configurations that agree with the Boltzmann distribution. Moreover, DBM requires little human intervention, as the reintroduction of details is learned from training examples. During the course of this thesis, DBM is applied to various tasks involving reverse-mapping: The general performance and transferability of DBM is evaluated at the example of a polymeric system consisting of polystyrene molecules. Beside an excellent accuracy of structural properties for reverse-mapped configurations, DBM displays a remarkable transferability across different state points and chemical space. Moreover, reverse-mapping with DBM is performed to assess the quality of CG models at the atomistic resolution. In addition, DBM is applied to adjust local structural properties, such as bond lengths and angles, of configurations obtained with top-down molecular models in order to resemble target distributions obtained with structure-based models more closely. Finally, a ML-based scheme inspired by DBM is applied for temporal coherent reverse-mapping of molecular trajectories. Overall, this thesis demonstrates the advantages of integrating generative ML methods into the framework of MM, especially for problems that are difficult to solve from a pure physics-based perspective.


An Introduction to multiscale modeling with applications

An Introduction to multiscale modeling with applications
Author: Pietro Asinari
Publisher: Società Editrice Esculapio
Total Pages: 372
Release: 2019-01-01
Genre: Science
ISBN: 882958911X

Download An Introduction to multiscale modeling with applications Book in PDF, ePub and Kindle

This book collects the slides prepared for the course of Advanced Engineering Thermodynamics (Master of Science in Mechanical Engineering) and those for the course of Multiscale Modelling and Simulation of Molecular and Mesoscopic Dynamics (PhD Program in Energetics), taught in English at Turin Polytechnic. Here, we provide a broad overview on the different topics taught in our classes. Even though not all topics are presented in the same class, students should be able to more easily reconstruct the connections among different phenomena (and scales), build their own mind map and, eventually, find their own way of deepening the subjects they are more interested in. Several engineering applications have been included. This helps in stressing that very different phenomena are described by transport theory and obey the same underlying fundamental laws of engineering thermodynamics. Detailed tutorials are reported, based on open-source codes for the laboratories (Gromacs, Palabos, OpenFoam and Cantera).


Principles of Multiscale Modeling

Principles of Multiscale Modeling
Author: Weinan E
Publisher: Cambridge University Press
Total Pages: 485
Release: 2011-07-07
Genre: Mathematics
ISBN: 1107096545

Download Principles of Multiscale Modeling Book in PDF, ePub and Kindle

A systematic discussion of the fundamental principles, written by a leading contributor to the field.