Physics And Computers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Physics And Computers PDF full book. Access full book title Physics And Computers.

The Physics of Computing

The Physics of Computing
Author: Marilyn Wolf
Publisher: Elsevier
Total Pages: 278
Release: 2016-10-16
Genre: Technology & Engineering
ISBN: 0128096160

Download The Physics of Computing Book in PDF, ePub and Kindle

The Physics of Computing gives a foundational view of the physical principles underlying computers. Performance, power, thermal behavior, and reliability are all harder and harder to achieve as transistors shrink to nanometer scales. This book describes the physics of computing at all levels of abstraction from single gates to complete computer systems. It can be used as a course for juniors or seniors in computer engineering and electrical engineering, and can also be used to teach students in other scientific disciplines important concepts in computing. For electrical engineering, the book provides the fundamentals of computing that link core concepts to computing. For computer science, it provides foundations of key challenges such as power consumption, performance, and thermal. The book can also be used as a technical reference by professionals. Links fundamental physics to the key challenges in computer design, including memory wall, power wall, reliability Provides all of the background necessary to understand the physical underpinnings of key computing concepts Covers all the major physical phenomena in computing from transistors to systems, including logic, interconnect, memory, clocking, I/O


The Physics of Computing

The Physics of Computing
Author: Luca Gammaitoni
Publisher: Springer Nature
Total Pages: 142
Release: 2021-10-18
Genre: Science
ISBN: 3030871088

Download The Physics of Computing Book in PDF, ePub and Kindle

This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.


Applied Physics, System Science and Computers

Applied Physics, System Science and Computers
Author: Klimis Ntalianis
Publisher: Springer
Total Pages: 290
Release: 2017-07-20
Genre: Technology & Engineering
ISBN: 3319539345

Download Applied Physics, System Science and Computers Book in PDF, ePub and Kindle

This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. It is organized in two main parts, the first of which covers applied physics topics, including lasers and accelerators; condensed matter, soft matter and materials science; nanoscience and quantum engineering; atomic, molecular, optical and plasma physics; as well as nuclear and high-energy particle physics. It also addresses astrophysics, gravitation, earth and environmental science, as well as medical and biological physics. The second part focuses on advances in system science and computers, exploring automatic circuit control, power systems, computer communication, fluid mechanics, simulation and modeling, software engineering, data structures and applications of artificial intelligence among other areas. Offering a collection of contributions presented at the 1st International Conference on Applied Physics, System Science and Computers (APSAC 2016), the book bridges the gap between applied physics and electrical engineering. It not only to presents new methods, but also promotes collaborations between different communities working on related topics at the interface between physics and engineering, with a special focus on communication, data modeling and visualization, quantum information, applied mechanics as well as bio and geophysics.


Physics by Computer

Physics by Computer
Author: Wolfgang Kinzel
Publisher: Springer
Total Pages: 291
Release: 2014-08-23
Genre: Science
ISBN: 9783642468414

Download Physics by Computer Book in PDF, ePub and Kindle

Using computers to solve problems and model physical problems has fast become an integral part of undergraduate and graduate education in physics. This 3rd year undergraduate and subsequent graduate course is a supplement to courses in theoretical physics and develops problem-solving techniques using the computer. It makes use of the newest version of Mathematica (3.0) while still remaining compatible with older versions The programs using Mathematica 3.0 and C are written for both PCs and workstations, and the problems, source files, and graphic routines help students gain experience from the very beginning.


Computer Meets Theoretical Physics

Computer Meets Theoretical Physics
Author: Giovanni Battimelli
Publisher: Springer Nature
Total Pages: 214
Release: 2020-06-17
Genre: Science
ISBN: 3030393992

Download Computer Meets Theoretical Physics Book in PDF, ePub and Kindle

This book provides a vivid account of the early history of molecular simulation, a new frontier for our understanding of matter that was opened when the demands of theoretical physicists were met by the availability of the modern computers. Since their inception, electronic computers have enormously increased their performance, thus making possible the unprecedented technological revolution that characterizes our present times. This obvious technological advancement has brought with it a silent scientific revolution in the practice of theoretical physics. In particular, in the physics of matter it has opened up a direct route from the microscopic physical laws to observable phenomena. One can now study the time evolution of systems composed of millions of molecules, and simulate the behaviour of macroscopic materials and actually predict their properties. Molecular simulation has provided a new theoretical and conceptual tool that physicists could only dream of when the foundations of statistical mechanics were laid. Molecular simulation has undergone impressive development, both in the size of the scientific community involved and in the range and scope of its applications. It has become the ubiquitous workhorse for investigating the nature of complex condensed matter systems in physics, chemistry, materials and the life sciences. Yet these developments remain largely unknown outside the inner circles of practitioners, and they have so far never been described for a wider public. The main objective of this book is therefore to offer a reasonably comprehensive reconstruction of the early history of molecular simulation addressed to an audience of both scientists and interested non-scientists, describing the scientific and personal trajectories of the main protagonists and discussing the deep conceptual innovations that their work produced.


Quantum Computer Science

Quantum Computer Science
Author: N. David Mermin
Publisher: Cambridge University Press
Total Pages: 236
Release: 2007-08-30
Genre: Science
ISBN: 1139466801

Download Quantum Computer Science Book in PDF, ePub and Kindle

In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University.


Quantum Computing for Everyone

Quantum Computing for Everyone
Author: Chris Bernhardt
Publisher: MIT Press
Total Pages: 214
Release: 2019-03-19
Genre: Computers
ISBN: 0262350947

Download Quantum Computing for Everyone Book in PDF, ePub and Kindle

An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.


Applied Physics, System Science and Computers III

Applied Physics, System Science and Computers III
Author: Klimis Ntalianis
Publisher: Springer
Total Pages: 356
Release: 2019-06-27
Genre: Science
ISBN: 3030215075

Download Applied Physics, System Science and Computers III Book in PDF, ePub and Kindle

This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. The first part covers applied physics topics, such as lasers and accelerators; fluid dynamics, optics and spectroscopy, among others. It also addresses astrophysics, security, and medical and biological physics. The second part focuses on advances in computers, such as those in the area of social networks, games, internet of things, deep learning models and more. The third part is especially related to systems science, covering swarm intelligence, smart cities, complexity and more. Advances in and application of computer communication, artificial intelligence, data analysis, simulation and modeling are also addressed. The book offers a collection of contributions presented at the 3nd International Conference on Applied Physics, System Science and Computers (APSAC), held in Dubrovnik, Croatia on September 26–28, 2018. Besides presenting new methods, it is also intended to promote collaborations between different communities working on related topics at the interface between physics, computer science and engineering.


The Energetics of Computing in Life and Machines

The Energetics of Computing in Life and Machines
Author: Chris Kempes
Publisher: Seminar
Total Pages: 500
Release: 2018-09
Genre: Science
ISBN: 9781947864184

Download The Energetics of Computing in Life and Machines Book in PDF, ePub and Kindle

Why do computers use so much energy? What are the fundamental physical laws governing the relationship between the precise computation run by a system, whether artificial or natural, and how much energy that computation requires? This volume integrates concepts from diverse fields, cultivating a modern, nonequilibrium thermodynamics of computation.


Physics for Computer Science Students

Physics for Computer Science Students
Author: Narciso Garcia
Publisher: Springer Science & Business Media
Total Pages: 563
Release: 2012-12-06
Genre: Computers
ISBN: 1461216168

Download Physics for Computer Science Students Book in PDF, ePub and Kindle

Not only computer scientists, but also electrical engineers, and others interested in electronics are targeted here, and thus the presentation is directed toward understanding how a computer works, while still providing a broad and effective one-year introduction to classical and modern physics. The first half of the book covers many of the topics found in a standard introductory physics course, but with the selection tailored for use in the second half. This second part then covers the fundamentals of quantum mechanics, multi-electron systems, crystal structure, semiconductor devices, and logic circuits. All the mathematical complexities treated are alleviated by intuitive physical arguments, and students are encouraged to use their own programming to solve problems. The only prerequisite is some knowledge of calculus, and the second part can serve by itself as an introduction to the physics of electronics for students who have had a standard two-semester introductory physics course. In this second edition, much of the material on electronic devices has been brought up to date, and there is a new chapter on integrated circuits and heterostructures.