Photoacoustic Probes For In Vivo Imaging PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photoacoustic Probes For In Vivo Imaging PDF full book. Access full book title Photoacoustic Probes For In Vivo Imaging.

Photoacoustic Probes for In Vivo Imaging

Photoacoustic Probes for In Vivo Imaging
Author:
Publisher: Academic Press
Total Pages: 502
Release: 2021-08-03
Genre: Science
ISBN: 0323855318

Download Photoacoustic Probes for In Vivo Imaging Book in PDF, ePub and Kindle

Methods in Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series Updated release includes the latest information on the Photoacoustic Probes for In Vivo Imaging


Biomedical Photoacoustics

Biomedical Photoacoustics
Author: Sihua Yang
Publisher: CRC Press
Total Pages: 320
Release: 2020-11-24
Genre: Technology & Engineering
ISBN: 1351336347

Download Biomedical Photoacoustics Book in PDF, ePub and Kindle

As a fast-growing imaging technology, photoacoustic (PA) imaging synergistically combines electromagnetic and ultrasonic waves providing higher contrast and resolution than conventional ultrasound imaging. This book presents the latest developments in this field, especially the advances in the detection of diseases using newly developed PA techniques.


Photoacoustic Tomography

Photoacoustic Tomography
Author: Minghua Xu
Publisher: CRC PressI Llc
Total Pages: 400
Release: 2014-09-30
Genre: Technology & Engineering
ISBN: 9781439882245

Download Photoacoustic Tomography Book in PDF, ePub and Kindle


Basics of Biomedical Ultrasound for Engineers

Basics of Biomedical Ultrasound for Engineers
Author: Haim Azhari
Publisher: John Wiley & Sons
Total Pages: 394
Release: 2010-03-25
Genre: Science
ISBN: 0470561467

Download Basics of Biomedical Ultrasound for Engineers Book in PDF, ePub and Kindle

A practical learning tool for building a solid understanding of biomedical ultrasound Basics of Biomedical Ultrasound for Engineers is a structured textbook that leads the novice through the field in a clear, step-by-step manner. Based on twenty years of teaching experience, it begins with the most basic definitions of waves, proceeds to ultrasound in fluids and solids, explains the principles of wave attenuation and reflection, then introduces to the reader the principles of focusing devices, ultrasonic transducers, and acoustic fields, and then delves into integrative applications of ultrasound in conventional and advanced medical imaging techniques (including Doppler imaging) and therapeutic ultrasound. Demonstrative medical applications are interleaved within the text and exemplary questions with solutions are provided on every chapter. Readers will come away with the basic toolkit of knowledge they need to successfully use ultrasound in biomedicine and conduct research. Encompasses a wide range of topics within biomedical ultrasound, from attenuation and eflection of waves to the intricacies of focusing devices, transducers, acoustic fields, modern medical imaging techniques, and therapeutics Explains the most common applications of biomedical ultrasound from an engineering point of view Provides need-to-know information in the form of physical and mathematical principles directed at concrete applications Fills in holes in knowledge caused by ever-increasing new applications of ultrasonic imaging and therapy Basics of Biomedical Ultrasound for Engineers is designed for undergraduate and graduate engineering students; academic/research engineers unfamiliar with ultrasound; and physicians and researchers in biomedical disciplines who need an introduction to the field. This book is meant to be “my first book on biomedical ultrasound” for anyone who is interested in the field.


LED-Based Photoacoustic Imaging

LED-Based Photoacoustic Imaging
Author: Mithun Kuniyil Ajith Singh
Publisher: Springer Nature
Total Pages: 393
Release: 2020-04-07
Genre: Science
ISBN: 9811539847

Download LED-Based Photoacoustic Imaging Book in PDF, ePub and Kindle

This book highlights the use of LEDs in biomedical photoacoustic imaging. In chapters written by key opinion leaders in the field, it covers a broad range of topics, including fundamentals, principles, instrumentation, image reconstruction and data/image processing methods, preclinical and clinical applications of LED-based photoacoustic imaging. Apart from preclinical imaging studies and early clinical pilot studies using LED-based photoacoustics, the book includes a chapter exploring the opportunities and challenges of clinical translation from an industry perspective. Given its scope, the book will appeal to scientists and engineers in academia and industry, as well as medical experts interested in the clinical applications of photoacoustic imaging.


Nitric Oxide Sensing

Nitric Oxide Sensing
Author: Sagarika Bhattacharya
Publisher: CRC Press
Total Pages: 117
Release: 2021-09-16
Genre: Medical
ISBN: 1000334775

Download Nitric Oxide Sensing Book in PDF, ePub and Kindle

Although nitric oxide (NO) is an important biological signaling molecule, its free-radical electronic configuration makes it a most reactive molecule and the scariest colorless gas causing immense environmental and health hazards. Detection of NO levels in biological samples and in the atmosphere is therefore crucial. In the past few years, extensive efforts have been devoted to developing many active sensors and effective devices for detecting and quantifying atmospheric NO, NO generated in biological samples, and NO exhaled in the human breath. This book provides a concrete summary of recent state-of-the-art small-molecule probes and novel carbon nanomaterials used for chemical, photoluminescent, and electrochemical NO detection. One chapter is especially dedicated to the available devices used for detecting NO in the human breath that indirectly infers to lung inflammation. The authors with expertise in diverse dimensions have attempted to cover almost all areas of NO sensing.


Photoacoustic Imaging Using Nanoclusters

Photoacoustic Imaging Using Nanoclusters
Author: Soon Joon Yoon
Publisher:
Total Pages: 216
Release: 2014
Genre:
ISBN:

Download Photoacoustic Imaging Using Nanoclusters Book in PDF, ePub and Kindle

Advances in novel imaging techniques and molecular probes are now extending the opportunity of visualizing molecular targets of disease. Molecular imaging provides anatomic as well as functional and pathological information to sense the expression of molecular biological events. In general, molecular imaging aims to target a specific cell type or tissue and visualize biological events in vivo at the molecular or cellular levels through specific probes. Molecular imaging is usually performed in conjunction with probes for specific targets. The objective of this dissertation is to explore molecular imaging by providing highly efficient photoacoustic nanocluster contrast agents to further validate in vivo molecular imaging, improve the therapeutic procedure, and study fundamental photoacoustic signal processes from cluster of nanoparticles. Initially, a photothermal stimuli-responsive photoacoustic nanocluster was designed and synthesized to provide highly sensitive dynamic contrast within tissue samples. The photoacoustic signal enhancement from clustering of nanoparticles was demonstrated by characterizing the photoacoustic signal from photothermal stimuli-responsive nanoclusters. After characterization, photothermal stimuli-responsive nanoclusters were injected into a mouse tissue and the dynamic photoacoustic response from the nanoclusters activated by an external laser source was observed. This activation can be repeatedly turned on by modulating input laser signals, suggesting a new route for dynamic photoacoustic contrast imaging that will further improve the imaging contrast and more accurately guide the drug release process. Despite tremendous advantages of using these nanoparticles, their safety in a biological environment could be a major hurdle for their in vivo utilization. In order to avoid accumulation and long-term toxicity of nanoparticles, biodegradable nanoclusters consisting of sub-5 nm primary gold particles stabilized by a weakly adsorbed biodegradable polymer were introduced. The photoacoustic signal from biodegradable nanoclusters was quantitatively characterized. In addition, photothermal stability of different sizes of biodegradable nanoclusters was investigated. These nanoclusters were then intravenously injected into mice and biodistribution of nanoparticles was observed. Finally, in vivo spectroscopic photoacoustic imaging was performed on tumor-bearing mice with antibody conjugated biodegradable nanoclusters. This research may provide a new opportunity for molecular imaging to help diagnose tumors at an early stage and promote clinical translation of these techniques.


Photoacoustic Imaging and Spectroscopy

Photoacoustic Imaging and Spectroscopy
Author: Lihong V. Wang
Publisher: CRC Press
Total Pages: 518
Release: 2017-12-19
Genre: Science
ISBN: 1420059920

Download Photoacoustic Imaging and Spectroscopy Book in PDF, ePub and Kindle

Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applications that are changing diagnostic medicine. Bringing together the leading pioneers in this field to write about their own work, Photoacoustic Imaging and Spectroscopy is the first to provide a full account of the latest research and developing applications in the area of biomedical photoacoustics. Photoacoustics can provide functional sensing of physiological parameters such as the oxygen saturation of hemoglobin. It can also provide high-contrast functional imaging of angiogenesis and hypermetabolism in tumors in vivo. Discussing these remarkable noninvasive applications and so much more, this reference is essential reading for all researchers in medical imaging and those clinicians working at the cutting-edge of modern biotechnology to develop diagnostic techniques that can save many lives and just as importantly do no harm.


Advancing Photoacoustic Imaging Technology with Compact Source, Fluorescence Co-registration, Spectral Encoding, Matrix Detection and FRET

Advancing Photoacoustic Imaging Technology with Compact Source, Fluorescence Co-registration, Spectral Encoding, Matrix Detection and FRET
Author: Yu Wang
Publisher:
Total Pages: 76
Release: 2013
Genre: Electronic dissertations
ISBN:

Download Advancing Photoacoustic Imaging Technology with Compact Source, Fluorescence Co-registration, Spectral Encoding, Matrix Detection and FRET Book in PDF, ePub and Kindle

Photoacoustic tomography, which detects non-radiative decay, is an emerging biomedical imaging modality that can provide 3D ultrasonically scalable images of biological tissue ranging from organelles to organs. Pure optical imaging modalities (e.g., optical coherence tomography and diffuse optical tomography) encounter a fundamental limitation of either penetration or spatial resolution at depths beyond one optical transport mean free path (~1 mm) due to strong light scattering by biological tissue. Photoacoustic imaging, however, provides a high ultrasonic spatial resolution for deep imaging by utilizing ultrasonic detection of the photoacoustic waves generated by absorbed diffuse light. By exploiting the rich optical absorption contrasts of biomolecules, photoacoustic imaging has been used to image both biological structure (e.g., internal organs and sentinel lymph nodes) and function (e.g., tumor hypoxia and brain oxygenation). The ability of photoacoustic imaging (photoacoustic microscopy and photoacoustic computed tomography) systems, to render three-dimensional volumetric images relies on illuminating light-absorbing chromophores using a pulsed laser system and recording the photoacoustic time-of-flight signals on a twodimensional surface facing the photoacoustic source. My doctoral research focuses on hardware advances in both exciting and detecting photoacoustic signals. Förster resonance energy transfer (FRET) imaging in deep biological tissue using photoacoustic techniques is also explored. This first part of my dissertation presents some novel photoacoustic excitation and detection technologies implemented in photoacoustic imaging. Fiber lasers have been proposed as a fast and compact alternative to current excitation sources for photoacoustic imaging, especially in the clinical environment. Its intrinsic optical-fiberbased amplification and output make the system easy to maintain. We developed a 1064 nm photoacoustic microscope based on a fiber laser system, which features a pulse repetition rate of 50 kHz. We demonstrated detection of circulating melanoma cells in blood. Photoacoustic and fluorescence imaging provide complementary optical absorption and fluorescence contrasts, respectively. We developed a dual modality imaging system that combines photoacoustic and fluorescence microscopy. The two sub-systems are naturally integrated by sharing the same laser source, objective lens and image scanner. We reported in vivo imaging of hemoglobin oxygen saturation and oxygen partial pressure in single blood vessels. Spectral (multi-wavelength) photoacoustic imaging must possess high wavelength-switching speed when applied in dynamic functional imaging. We implemented a digital-mirror-device (DMD)-based spectral-encoding photoacoustic imaging system. As a wavelength multiplexing element, DMD features a fast frame rate and pixelated manipulation flexibility. Compared with internal wavelength tuning of a narrow-band laser, external wavelength tuning based on a digital mirror device improves the data acquisition speed of spectral photoacoustic microscopy. Compared with external wavelength scanning of a wide-band laser with the same pulse energy, spectral encoding improves the signal-to-noise ratio. A twodimensional (2D) array transducer can acquire three-dimensional (3D) photoacoustic imaging without mechanical scanning; therefore, by using a small number of laser firings, higher imaging frame rates can be achieved. We presented an integrated photoacoustic and ultrasonic 3D volumetric imaging system based on a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2D array transducer (X7-2, Philips Healthcare). The imaging system enables rendering of coregistered 3D ultrasound and photoacoustic images. In vivo 3D photoacoustic mapping of the sentinel lymph node using methylene blue dye was demonstrated in a rat model. The second part of my dissertation focuses on photoacoustic Förster resonance energy transfer (FRET) imaging. FRET provides fluorescence signals sensitive to intra- and inter-molecular distances in the 1-10 nm range. Widely applied in the optical imaging environment, FRET enables visualization of physicochemical processes in molecular interactions and conformations. We reported photoacoustic imaging of FRET, based on non-radiative decay that produces heat and subsequent acoustic waves. The experimental results show that photoacoustic imaging, through its ability to threedimensionally image tissue with scalable resolution, provides a beneficial biomedical tool to broaden the in vivo application of the FRET technique.


Handbook of In Vivo Chemistry in Mice

Handbook of In Vivo Chemistry in Mice
Author: Katsunori Tanaka
Publisher: John Wiley & Sons
Total Pages: 560
Release: 2020-04-27
Genre: Science
ISBN: 3527344322

Download Handbook of In Vivo Chemistry in Mice Book in PDF, ePub and Kindle

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.