Peptidoglycan Structure And Dynamics In Gram Positive Bacteria PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Peptidoglycan Structure And Dynamics In Gram Positive Bacteria PDF full book. Access full book title Peptidoglycan Structure And Dynamics In Gram Positive Bacteria.

Bacterial Cell Wall

Bacterial Cell Wall
Author: J.-M. Ghuysen
Publisher: Elsevier
Total Pages: 607
Release: 1994-02-09
Genre: Science
ISBN: 0080860877

Download Bacterial Cell Wall Book in PDF, ePub and Kindle

Studies of the bacterial cell wall emerged as a new field of research in the early 1950s, and has flourished in a multitude of directions. This excellent book provides an integrated collection of contributions forming a fundamental reference for researchers and of general use to teachers, advanced students in the life sciences, and all scientists in bacterial cell wall research. Chapters include topics such as: Peptidoglycan, an essential constituent of bacterial endospores; Teichoic and teichuronic acids, lipoteichoic acids, lipoglycans, neural complex polysaccharides and several specialized proteins are frequently unique wall-associated components of Gram-positive bacteria; Bacterial cells evolving signal transduction pathways; Underlying mechanisms of bacterial resistance to antibiotics.


Bacterial Cell Wall Structure and Dynamics

Bacterial Cell Wall Structure and Dynamics
Author: Tobias Dörr
Publisher: Frontiers Media SA
Total Pages: 199
Release: 2019-12-27
Genre:
ISBN: 2889631524

Download Bacterial Cell Wall Structure and Dynamics Book in PDF, ePub and Kindle

Bacterial cells are encased in a cell wall, which is required to maintain cell shape and to confer physical strength to the cell. The cell wall allows bacteria to cope with osmotic and environmental challenges and to secure cell integrity during all stages of bacterial growth and propagation, and thus has to be sufficiently rigid. Moreover, to accommodate growth processes, the cell wall at the same time has to be a highly dynamic structure: During cell enlargement, division, and differentiation, bacteria continuously remodel, degrade, and resynthesize their cell wall, but pivotally need to assure cell integrity during these processes. Finally, the cell wall is also adjusted according to both environmental constraints and metabolic requirements. However, how exactly this is achieved is not fully understood. The major structural component of the bacterial cell wall is peptidoglycan (PG), a mesh-like polymer of glycan chains interlinked by short-chain peptides, constituting a net-like macromolecular structure that has historically also termed murein or murein sacculus. Although the basic structure of PG is conserved among bacteria, considerable variations occur regarding cross-bridging, modifications, and attachments. Moreover, different structural arrangements of the cell envelope exist within bacteria: a thin PG layer sandwiched between an inner and outer membrane is present in Gram-negative bacteria, and a thick PG layer decorated with secondary glycopolymers including teichoic acids, is present in Gram-positive bacteria. Furthermore, even more complex envelope structures exist, such as those found in mycobacteria. Crucially, all bacteria possess a multitude of often redundant lytic enzymes, termed “autolysins”, and other cell wall modifying and synthesizing enzymes, allowing to degrade and rebuild the various structures covering the cells. However, how cell wall turnover and cell wall biosynthesis are coordinated during different stages of bacterial growth is currently unclear. The mechanisms that prevent cell lysis during these processes are also unclear. This Research Topic focuses on the dynamics of the bacterial cell wall, its modifications, and structural rearrangements during cell growth and differentiation. It pays particular attention to the turnover of PG, its breakdown and recycling, as well as the regulation of these processes. Other structures, for example, secondary polymers such as teichoic acids, which are dynamically changed during bacterial growth and differentiation, are also covered. In recent years, our view on the bacterial cell envelope has undergone a dramatic change that challenged old models of cell wall structure, biosynthesis, and turnover. This collection of articles aims to contribute to new understandings of bacterial cell wall structure and dynamics.


Extracellular Sugar-Based Biopolymers Matrices

Extracellular Sugar-Based Biopolymers Matrices
Author: Ephraim Cohen
Publisher: Springer
Total Pages: 820
Release: 2019-07-02
Genre: Science
ISBN: 3030129195

Download Extracellular Sugar-Based Biopolymers Matrices Book in PDF, ePub and Kindle

The extracellular matrix (ECM) is an acellular three-dimensional network composed of proteins, glycoproteins, proteoglycans and exopolysaccharides. It primarily serves as a structural component in the tissues and organs of plants and animals, or forms biofilms in which bacterial cells are embedded. ECMs are highly dynamic structures that undergo continuous remodeling, and disruptions are frequently the result of pathological processes associated with severe diseases such as arteriosclerosis, neurodegenerative illness or cancer. In turn, bacterial biofilms are a source of concern for human health, as they are associated with resistance to antibiotics. Although exopolysaccharides are crucial for ECM formation and function, they have received considerably little attention to date. The respective chapters of this book comprehensively address such issues, and provide reviews on the structural, biochemical, molecular and biophysical properties of exopolysaccharides. These components are abundantly produced by virtually all taxa including bacteria, algae, plants, fungi, invertebrates and vertebrates. They include long unbranched homopolymers (cellulose, chitin/chitosan), linear copolymers (alginate, agarose), peptoglycans such as murein, heteropolymers like a variety of glycosaminoglycans (hyaluronan, dermatan, keratin, heparin, Pel), and branched heteropolymers such as pectin and hemicellulose. A separate chapter is dedicated to modern industrial and biomedical applications of exopolysaccharides and polysaccharide-based biocomposites. Their unique chemical, physical and mechanical properties have attracted considerable interest, inspired basic and applied research, and have already been harnessed to form structural biocomposite hybrids for tailor-made applications in regenerative medicine, bioengineering and biosensor design. Given its scope, this book provides a substantial source of basic and applied information for a wide range of scientists, as well as valuable textbook for graduate and advanced undergraduate students.


Peptidoglycan Architecture and Dynamics in Gram-positive Bacteria

Peptidoglycan Architecture and Dynamics in Gram-positive Bacteria
Author: Richard Wheeler
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Peptidoglycan Architecture and Dynamics in Gram-positive Bacteria Book in PDF, ePub and Kindle

The major structural determinant of most bacterial cells is the peptidoglycan layer, a network (the sacculus) of glycan strands cross-linked by short peptide stems which encompasses the entire bacterium. However the architecture of peptidoglycan, which must accommodate both the structural requirements of the cell and the dynamic processes of growth and division, is poorly understood. Most architectural studies have addressed the peptidoglycan of rod-shaped bacteria. The architecture in Gram-positive cocci and ovococci is largely uncharacterised, In this study, atomic force microscopy (AFM) of purified sacculi of three species of ovococcus was combined with biochemical analysis and super resolution fluorescence microscopy. A model was developed in which incorporation of long glycan strands from a single mid-cell focus results in preferential orientation, parallel to the short axis of the cell. AFM and fluorescence microscopy of the coccoid bacterium Staphylococcus aureus revealed a dynamic peptidoglycan architecture of rings and knobbles, growth by peptidoglycan maturation, and a system of heritable peptidoglycan ribs. Ribs may provide a structural mechanism for coordinating orthogonal division on three planes. We hypothesised cell wall growth occurs via the activity of N-acetyl-[beta]-D-glucosaminidases. Four putative glucosaminidases were identified, with SagB found to have a major role in glycan strand length determination. Hydrolysis of the septal cross-wall by glucosaminidase activity was required for spherical shape, suggesting a novel mechanism of growth by hydrolysis. My work has highlighted diverse and elegant peptidoglycan architectures, adapted to meet the unique mechanical requirements of bacteria with different morphologies and strategies for growth and division.


Microbial Cell Walls and Membranes

Microbial Cell Walls and Membranes
Author: H. R. Perkins
Publisher: Springer Science & Business Media
Total Pages: 555
Release: 2012-12-06
Genre: Science
ISBN: 9401160147

Download Microbial Cell Walls and Membranes Book in PDF, ePub and Kindle

In 1968 when Cell Walls and Membranes was published it was still reasonable to attempt to write a book covering the whole subject. Accordingly this edition of the book had something to say about walls from micro-organisms and plants as well as about membranes from bacteria and animal cells. A decade later this is manifestly impossible. Knowledge about almost all the subjects has grown explosively, par ticularly about membranes and the biosynthesis of macromolecules. Moreover aspects of the subject that were still in a relatively primitive state ten years ago have grown into highly sophisticated subjects worthy of extended treatment. The result is that the present book has had to be confined to structures and functions relating to only one division of the biological kingdom, namely micro-organisms. Even then severe limitations have had to be made to keep the task within the time available to the authors and their expertise. A few of the titles of chapters such as those on the isolation of walls and membranes, the structure of the components of bacterial and micro-fungal walls and their biosynthesis remain from the earlier book. These chapters have been almost completely rewritten and a number of quite new chapters added on topics such as the action of the antibiotics that inhibit bacterial wall syn thesis, on the function of bacterial membranes, and the bacterial autolysins.


Membrane Biogenesis

Membrane Biogenesis
Author: Jos A.F. Op den Kamp
Publisher: Springer Science & Business Media
Total Pages: 474
Release: 2013-06-29
Genre: Science
ISBN: 3642731848

Download Membrane Biogenesis Book in PDF, ePub and Kindle

Many individual aspects of the dynamics and assembly of biological membranes have been studied in great detail. Cell biological approaches, advanced genetics, biophysics and biochemistry have greatly contributed to an increase in our knowledge in this field.lt is obvious however, that the three major membrane constituents - lipids, proteins and carbohydrates- are studied, in most cases separately and that a coherent overview of the various aspects of membrane biogenesis is not readily available. The NATO Advanced Study Institute on "New Perspectives in the Dynamics of Assembly of Biomembranes" intended to provide such an overview: it was set up to teach students and specialists the achievements obtained in the various research areas and to try and integrate the numerous aspects of membrane assembly into a coherent framework. The articles in here reflect this. Statting with detailed contributions on phospholipid structure, dynamics, organization and biogenesis, an up to date overview of the basic, lipidic backbone of biomembranes is given. Extensive progress is made in the research on membrane protein biosynthesis. In particular the post- and co-translational modification processes of proteins, the mechanisms of protein translocation and the sorting mechanisms which are necessary to direct proteins to their final, intra - or extracellular destination have been characterized in detail. Modern genetic approaches were indispensable in this research area: gene cloning, hybrid protein construction, site directed mutagenesis and sequencing techniques elucidated many functional aspects of specific nucleic acid and amino acid sequences.


Practical Handbook of Microbiology

Practical Handbook of Microbiology
Author: Lorrence H Green
Publisher: CRC Press
Total Pages: 2032
Release: 2021-05-04
Genre: Science
ISBN: 1000245039

Download Practical Handbook of Microbiology Book in PDF, ePub and Kindle

Practical Handbook of Microbiology, 4th edition provides basic, clear and concise knowledge and practical information about working with microorganisms. Useful to anyone interested in microbes, the book is intended to especially benefit four groups: trained microbiologists working within one specific area of microbiology; people with training in other disciplines, and use microorganisms as a tool or "chemical reagent"; business people evaluating investments in microbiology focused companies; and an emerging group, people in occupations and trades that might have limited training in microbiology, but who require specific practical information. Key Features Provides a comprehensive compendium of basic information on microorganisms—from classical microbiology to genomics. Includes coverage of disease-causing bacteria, bacterial viruses (phage), and the use of phage for treating diseases, and added coverage of extremophiles. Features comprehensive coverage of antimicrobial agents, including chapters on anti-fungals and anti-virals. Covers the Microbiome, gene editing with CRISPR, Parasites, Fungi, and Animal Viruses. Adds numerous chapters especially intended for professionals such as healthcare and industrial professionals, environmental scientists and ecologists, teachers, and businesspeople. Includes comprehensive survey table of Clinical, Commercial, and Research-Model bacteria. The Open Access version of this book, available at http://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license. Chapter 21, "Archaea," of this book is freely available as a downloadable Open Access PDF under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license available at http://www.taylorfrancis.com See Emanuel Goldman's Open Access article: "Lamarck redux and other false arguments against SARS-CoV-2 vaccination," https://www.embopress.org/doi/full/10.15252/embr.202254675


Prokaryotic Cytoskeletons

Prokaryotic Cytoskeletons
Author: Jan Löwe
Publisher: Springer
Total Pages: 457
Release: 2017-05-11
Genre: Science
ISBN: 331953047X

Download Prokaryotic Cytoskeletons Book in PDF, ePub and Kindle

This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.