Path Planning For Autonomous Vehicle In Off Road Scenario PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Path Planning For Autonomous Vehicle In Off Road Scenario PDF full book. Access full book title Path Planning For Autonomous Vehicle In Off Road Scenario.

Path Planning for Autonomous Vehicle in Off-Road Scenario

Path Planning for Autonomous Vehicle in Off-Road Scenario
Author: Haiping Du
Publisher:
Total Pages: 0
Release: 2020
Genre: Technology & Engineering
ISBN:

Download Path Planning for Autonomous Vehicle in Off-Road Scenario Book in PDF, ePub and Kindle

The road topography information, such as bank angle and road slope, can significantly affect the trajectory tracking performance of the autonomous vehicle, so this information needs to be considered in the trajectory planning and tracking control for off-road autonomous vehicle. In this chapter, a two-level real-time dynamically integrated spatiotemporal-based trajectory planning and control method for off-road autonomous vehicle is proposed. In the upper-level trajectory planner, the most suitable time-parameterised trajectory with the minimum values of road slope and bank angle can be selected from a set of candidate trajectories. In the lower-level trajectory tracking controller, the sliding-mode control (SMC) technique is applied to control the vehicle and achieve the desired trajectory. Finally, simulation results are presented to verify the proposed integrated trajectory planning and control method and prove that the proposed integrated method has better overall tracking control and dynamics control performance than the conventional method both in the highway scenario and off-road scenario. Furthermore, the four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID) vehicle shows better tracking control performance than vehicle based on two-wheel model.


Path Planning for Autonomous Vehicle

Path Planning for Autonomous Vehicle
Author: Umar Zakir Abdul Hamid
Publisher: BoD – Books on Demand
Total Pages: 150
Release: 2019-10-02
Genre: Transportation
ISBN: 1789239915

Download Path Planning for Autonomous Vehicle Book in PDF, ePub and Kindle

Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).


Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios
Author: Mahdi Morsali
Publisher: Linköping University Electronic Press
Total Pages: 25
Release: 2021-03-25
Genre: Electronic books
ISBN: 9179296939

Download Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios Book in PDF, ePub and Kindle

Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle conditions. The main concerns in designing the planning algorithms, are realtime capability, safety and comfort. The planning algorithms developed in this thesis aretested in simulation traffic situations with multiple moving vehicles as obstacles. The re-search conducted in this thesis falls mainly into two parts, the first part investigates decou-pled trajectory planning algorithms with a focus on speed planning, and the second sectionexplores different coupled planning algorithms in spatiotemporal environments where pathand speed are calculated simultaneously. Additionally, a behavioral analysis is carried outto evaluate different tactical maneuvers the autonomous vehicle can have considering theinitial states of the ego and surrounding vehicles. Particularly relevant for heavy duty vehicles, the issues addressed in designing a safe speedplanner in the first part are road conditions such as banking, friction, road curvature andvehicle characteristics. The vehicle constraints on acceleration, jerk, steering, steer ratelimitations and other safety limitations such as rollover are further considerations in speedplanning algorithms. For real time purposes, a minimum working roll model is identified us-ing roll angle and lateral acceleration data collected in a heavy duty truck. In the decoupledplanners, collision avoiding is treated using a search and optimization based planner. In an autonomous vehicle, the structure of the road network is known to the vehicle throughmapping applications. Therefore, this key property can be used in planning algorithms toincrease efficiency. The second part of the thesis, is focused on handling moving obstaclesin a spatiotemporal environment and collision-free planning in complex urban structures.Spatiotemporal planning holds the benefits of exhaustive search and has advantages com-pared to decoupled planning, but the search space in spatiotemporal planning is complex.Support vector machine is used to simplify the search problem to make it more efficient.A SVM classifies the surrounding obstacles into two categories and efficiently calculate anobstacle free region for the ego vehicle. The formulation achieved by solving SVM, con-tains information about the initial point, destination, stationary and moving obstacles.These features, combined with smoothness property of the Gaussian kernel used in SVMformulation is proven to be able to solve complex planning missions in a safe way. Here, three algorithms are developed by taking advantages of SVM formulation, a greedysearch algorithm, an A* lattice based planner and a geometrical based planner. One general property used in all three algorithms is reduced search space through using SVM. In A*lattice based planner, significant improvement in calculation time, is achieved by using theinformation from SVM formulation to calculate a heuristic for planning. Using this heuristic,the planning algorithm treats a simple driving scenario and a complex urban structureequal, as the structure of the road network is included in SVM solution. Inspired byobserving significant improvements in calculation time using SVM heuristic and combiningthe collision information from SVM surfaces and smoothness property, a geometrical planneris proposed that leads to further improvements in calculation time. Realistic driving scenarios such as roundabouts, intersections and takeover maneuvers areused, to test the performance of the proposed algorithms in simulation. Different roadconditions with large banking, low friction and high curvature, and vehicles prone to safetyissues, specially rollover, are evaluated to calculate the speed profile limits. The trajectoriesachieved by the proposed algorithms are compared to profiles calculated by optimal controlsolutions.


Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver

Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver
Author: Muhammad Aizzat Zakaria
Publisher:
Total Pages: 148
Release: 2019
Genre: Motor vehicles. Aeronautics. Astronautics
ISBN: 9781839622854

Download Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver Book in PDF, ePub and Kindle

Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).


Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver

Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver
Author: Muhammad Aizzat Zakaria
Publisher:
Total Pages: 148
Release: 2019
Genre: Motor vehicles. Aeronautics. Astronautics
ISBN: 9781789239928

Download Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver Book in PDF, ePub and Kindle

Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).


Autonomous Ground Vehicles

Autonomous Ground Vehicles
Author: Ümit Özgüner
Publisher: Artech House
Total Pages: 289
Release: 2011
Genre: Technology & Engineering
ISBN: 1608071936

Download Autonomous Ground Vehicles Book in PDF, ePub and Kindle

In the near future, we will witness vehicles with the ability to provide drivers with several advanced safety and performance assistance features. Autonomous technology in ground vehicles will afford us capabilities like intersection collision warning, lane change warning, backup parking, parallel parking aids, and bus precision parking. Providing you with a practical understanding of this technology area, this innovative resource focuses on basic autonomous control and feedback for stopping and steering ground vehicles.Covering sensors, estimation, and sensor fusion to percept the vehicle motion and surrounding objects, this unique book explains the key aspects that makes autonomous vehicle behavior possible. Moreover, you find detailed examples of fusion and Kalman filtering. From maps, path planning, and obstacle avoidance scenarios...to cooperative mobility among autonomous vehicles, vehicle-to-vehicle communication, and vehicle-to-infrastructure communication, this forward-looking book presents the most critical topics in the field today.


Autonomous Vehicle Obstacle Avoidance Maneuvers

Autonomous Vehicle Obstacle Avoidance Maneuvers
Author:
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Autonomous Vehicle Obstacle Avoidance Maneuvers Book in PDF, ePub and Kindle

Abstract : Full market penetration for autonomous vehicle requires complete solutions for operation during winter driving conditions. This work addresses three key issues relevant to the dynamic response of an autonomous vehicle when faced with reduced friction due to snow and ice on the road when attempting a double lane change obstacle avoidance maneuver. Two low friction scenarios as well as an improvement to simulation methods are presented. The first low friction scenario an autonomous vehicle may encounter is one in which the road surface friction coefficient is incorrectly assumed to be dry pavement. This scenario could occur in the presence of clear ice on the road which is undetectable by the vehicle until it begins traversing the effected area. In this case, the vehicle must react in a way which maintains vehicle control during the maneuver by adapting to the loss of tractive force at the wheels. This work presents a method for altering the look ahead distance of the common pure pursuit lateral control method for autonomous vehicles. This method stabilizes the vehicle during the maneuvers by dynamically changing the look ahead distance based on cross track error in addition to vehicle velocity. Implementation in the autonomous test vehicle used in this work shows an elimination of off-road occurrences during double lane changes on ice and a 46\% reduction of off-read occurrences during single lane changes. The second low friction scenario an autonomous vehicle may encounter is one in which the road surface friction coefficient is known by the autonomous vehicle through it's own perception or through vehicle to vehicle/infrastructure communication. In this case the vehicle must plan it's path accordingly to ensure the vehicle successfully avoids the obstacle while maintaining control and passenger comfort. This work presents an optimization method which results in a minimum maneuver length across a profile of friction surfaces at a single velocity. This work also investigates the lack of correlation between the autonomous test platform operating on an icy surface and a simulation using a constant coefficient for low friction surfaces. The simulation environment used accurately predicts vehicle dynamic response when simulating operation on dry pavement with a divergence in response on friction values below that of packed snow ($\mu=0.3$). On lower friction surfaces the test vehicle exhibits significant variation in response to steering input. This work presents a stochastic method for representing friction surface in simulation across a grid map to bring simulation vehicle position prediction in line with test vehicle behavior on icy surfaces. This method shows a strong correlation between the simulation and test vehicle during rapid double lane changes and is further validation through the application of previously developed control and path planning methods.


The DARPA Urban Challenge

The DARPA Urban Challenge
Author: Martin Buehler
Publisher: Springer
Total Pages: 651
Release: 2009-11-26
Genre: Technology & Engineering
ISBN: 364203991X

Download The DARPA Urban Challenge Book in PDF, ePub and Kindle

By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.


Path-Planning and Optimization of a High-speed 1/5-Scale Off-Road Autonomous Vehicle

Path-Planning and Optimization of a High-speed 1/5-Scale Off-Road Autonomous Vehicle
Author: Andres Esparragoza
Publisher:
Total Pages: 0
Release: 2024
Genre:
ISBN:

Download Path-Planning and Optimization of a High-speed 1/5-Scale Off-Road Autonomous Vehicle Book in PDF, ePub and Kindle

This thesis investigates path-planning for a high-speed off-road autonomous vehicle. A 1/5th scale Remote Control (RC) vehicle was modified with sensors to be able to track vehicle position, trajectory, velocity, and other parameters necessary while performing traversals on a specifically designed off-road course that challenges the vehicles maneuverability and velocity. Advanced global position system (GPS) and encoder algorithms are implemented into the vehicles onboard microcontrollers to determine real time data necessary to dictate the necessary steering and throttle inputs. The sensor algorithms allow for the vehicle to measure its position and velocity, thereby enabling the foundation of path-following. Using algorithms to control the two receiving functions, steering and throttle, the vehicle must traverse the course autonomously with the aim of increasing speed per traversal until reaching an optimal steady-state velocity profile. Using iterative learning control (ILC) and similar control strategies, the vehicle learns from prior traversals to find limiting levels of velocity to be able to repeatedly produce traversals faster with each lap. The foundation for a 1/5th scale high-speed off-road vehicle path following simulation is created on MATLAB prior to vehicle implementation. The simulation successfully models constant speed along a path for both large-scale and 1/5th scale vehicles. The simulation is prepared for the implementation of ILC to determine the optimal steady-state velocity profile. The goal is for the simulation to achieve lap navigation faster than if a human were to control the vehicle via its remote-control unit. This research discussion concludes by outlining the next steps for algorithm development and field testing. The overall goal is to contribute to the development of autonomous off-road vehicles for use in a range of applications, including agriculture, mining, and search and rescue. The findings of this thesis seek to advance core algorithms and deployment technologies for autonomous systems in challenging off-road environments.


Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems
Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
Total Pages: 285
Release: 2017-10-25
Genre: Computers
ISBN: 1681731673

Download Creating Autonomous Vehicle Systems Book in PDF, ePub and Kindle

This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.