Parametric Design Of Floating Wind Turbines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Parametric Design Of Floating Wind Turbines PDF full book. Access full book title Parametric Design Of Floating Wind Turbines.

Parametric Design of Floating Wind Turbines

Parametric Design of Floating Wind Turbines
Author: Christopher Henry Tracy
Publisher:
Total Pages: 93
Release: 2007
Genre:
ISBN:

Download Parametric Design of Floating Wind Turbines Book in PDF, ePub and Kindle

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near shore waters has been slowed by aesthetic concerns of coastal residents. Going further offshore eliminates these aesthetic concerns and has the additional advantage of stronger and more consistent winds. However, the vast majority of promising locations beyond the view of land are in sufficiently deep water to make building a rigid structure to the ocean floor economically infeasible. Cost effective floating structures are needed to enable wind farm installation in deep water and increase the world's installed base of renewable energy. This thesis presents a parametric approach to the design of these floating structures for offshore wind turbines. It starts with the relevant design concepts from the offshore oil gas industry and presents appropriate combinations of structures and mooring systems that meet the requirements for a generic five mega watt wind turbine. The results of the parametric study are a number of designs that show Pareto fronts for mean square acceleration of the turbine versus multiple cost drivers for the offshore structure. These cost drivers include displacement of the floating structure and total mooring line tension.


Floating Offshore Wind Energy

Floating Offshore Wind Energy
Author: Joao Cruz
Publisher: Springer
Total Pages: 345
Release: 2016-08-20
Genre: Technology & Engineering
ISBN: 3319293982

Download Floating Offshore Wind Energy Book in PDF, ePub and Kindle

This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.


Reliability-Based Optimization of Floating Wind Turbine Support Structures

Reliability-Based Optimization of Floating Wind Turbine Support Structures
Author: Mareike Leimeister
Publisher: Springer Nature
Total Pages: 336
Release: 2023-01-01
Genre: Technology & Engineering
ISBN: 3030968898

Download Reliability-Based Optimization of Floating Wind Turbine Support Structures Book in PDF, ePub and Kindle

This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering.


Floating Offshore Wind Farms

Floating Offshore Wind Farms
Author: Laura Castro-Santos
Publisher: Springer
Total Pages: 204
Release: 2016-03-05
Genre: Technology & Engineering
ISBN: 3319279726

Download Floating Offshore Wind Farms Book in PDF, ePub and Kindle

This book provides an overview of floating offshore wind farms and focuses on the economic aspects of this renewable-energy technology. It presents economic maps demonstrating the main costs, and explores various important aspects of floating offshore wind farms. It examines topics including offshore wind turbines, floating offshore wind platforms, mooring and anchoring, as well as offshore electrical systems. It is a particularly useful resource in light of the fact that most water masses are deep and therefore not suitable for fixed offshore wind farms. A valuable reference work for students and researchers interested in naval and ocean engineering and economics, this book provides a new perspective on floating offshore wind farms, and makes a useful contribution to the existing literature.


Offshore Wind Energy Cost Modeling

Offshore Wind Energy Cost Modeling
Author: Mark J Kaiser
Publisher: Springer Science & Business Media
Total Pages: 243
Release: 2012-01-12
Genre: Technology & Engineering
ISBN: 144712488X

Download Offshore Wind Energy Cost Modeling Book in PDF, ePub and Kindle

Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation. This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decommissioning. The book provides a reliable point of reference for industry practitioners and policy makers developing generalizable installation or decommissioning cost estimates.


Design of Foundations for Offshore Wind Turbines

Design of Foundations for Offshore Wind Turbines
Author: Subhamoy Bhattacharya
Publisher: John Wiley & Sons
Total Pages: 387
Release: 2019-04-29
Genre: Technology & Engineering
ISBN: 1119128129

Download Design of Foundations for Offshore Wind Turbines Book in PDF, ePub and Kindle

Comprehensive reference covering the design of foundations for offshore wind turbines As the demand for “green” energy increases the offshore wind power industry is expanding at a rapid pace around the world. Design of Foundations for Offshore Wind Turbines is a comprehensive reference which covers the design of foundations for offshore wind turbines, and includes examples and case studies. It provides an overview of a wind farm and a wind turbine structure, and examines the different types of loads on the offshore wind turbine structure. Foundation design considerations and the necessary calculations are also covered. The geotechnical site investigation and soil behavior/soil structure interaction are discussed, and the final chapter takes a case study of a wind turbine and demonstrates how to carry out step by step calculations. Key features: New, important subject to the industry. Includes calculations and case studies. Accompanied by a website hosting software and data files. Design of Foundations for Offshore Wind Turbines is a must have reference for engineers within the renewable energy industry and is also a useful guide for graduate students in this area.


A comparison of methods for computation of wave forcing

A comparison of methods for computation of wave forcing
Author: Olga Glöckner
Publisher: GRIN Verlag
Total Pages: 131
Release: 2018-05-17
Genre: Technology & Engineering
ISBN: 3668705224

Download A comparison of methods for computation of wave forcing Book in PDF, ePub and Kindle

Diploma Thesis from the year 2014 in the subject Engineering - Civil Engineering, grade: 1,0, University of Hannover (A&M University Texas, Ludwig-Franzius-Institut für Wasserbau, Ästuar- und Küsteningenieurwesen), language: English, abstract: Unlike fossil fuels (for example oil, coal and natural gas), wind energy is a renewable energy resource. Since winds at sea are stronger and more consistent than onshore winds, the demand for offshore wind turbines has increased over the last years. As energy can be produced more efficient in deeper water, several floating offshore wind turbine constructions, such as the OC3 Hywind spar-buoy, have been proposed. The design of floating wind turbines depends on the simulation of the system behavior caused by exciting forces. This thesis deals with the comparison between different methods for calculating wave forces and resulting platform motions of a floating offshore wind turbine. On the one hand, wave exciting loads computed with Morison’s equation are compared to the hydrodynamic forces simulated by the open source code FAST on the basis of the diffraction theory. On the other hand, response motions of the floating structure are simulated by the commercial offshore software SESAM in the frequency domain and compared with the motions calculated by FAST in the time domain.


Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines

Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines
Author: Madjid Karimirad
Publisher:
Total Pages: 290
Release: 2020-09-04
Genre:
ISBN: 9783039369126

Download Assessment and Nonlinear Modeling of Wave, Tidal and Wind Energy Converters and Turbines Book in PDF, ePub and Kindle

The Special Issue "Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines" contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten-Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.