Parallel Sparse Direct Solver For Integrated Circuit Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Parallel Sparse Direct Solver For Integrated Circuit Simulation PDF full book. Access full book title Parallel Sparse Direct Solver For Integrated Circuit Simulation.

Parallel Sparse Direct Solver for Integrated Circuit Simulation

Parallel Sparse Direct Solver for Integrated Circuit Simulation
Author: Xiaoming Chen
Publisher: Springer
Total Pages: 137
Release: 2017-02-11
Genre: Technology & Engineering
ISBN: 3319534297

Download Parallel Sparse Direct Solver for Integrated Circuit Simulation Book in PDF, ePub and Kindle

This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques.


Parallel Algorithms in Computational Science and Engineering

Parallel Algorithms in Computational Science and Engineering
Author: Ananth Grama
Publisher: Springer Nature
Total Pages: 421
Release: 2020-07-06
Genre: Computers
ISBN: 3030437361

Download Parallel Algorithms in Computational Science and Engineering Book in PDF, ePub and Kindle

This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.


High Performance Computing for Computational Science -- VECPAR 2014

High Performance Computing for Computational Science -- VECPAR 2014
Author: Michel Daydé
Publisher: Springer
Total Pages: 318
Release: 2015-04-20
Genre: Computers
ISBN: 3319173537

Download High Performance Computing for Computational Science -- VECPAR 2014 Book in PDF, ePub and Kindle

This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on High Performance Computing for Computational Science, VECPAR 2014, held in Eugene, OR, USA, in June/July 2014. The 25 papers presented were carefully reviewed and selected of numerous submissions. The papers are organized in topical sections on algorithms for GPU and manycores, large-scale applications, numerical algorithms, direct/hybrid methods for solving sparse matrices, performance tuning. The volume also contains the papers presented at the 9th International Workshop on Automatic Performance Tuning.


Modeling, Simulation, and Optimization of Integrated Circuits

Modeling, Simulation, and Optimization of Integrated Circuits
Author: K. Antreich
Publisher: Birkhäuser
Total Pages: 356
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034880650

Download Modeling, Simulation, and Optimization of Integrated Circuits Book in PDF, ePub and Kindle

The third Conference on Mathematical Models and Numerical Simulation in Electronic Industry brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.


Nanoelectronic Coupled Problems Solutions

Nanoelectronic Coupled Problems Solutions
Author: E. Jan W. ter Maten
Publisher: Springer Nature
Total Pages: 587
Release: 2019-11-06
Genre: Mathematics
ISBN: 3030307263

Download Nanoelectronic Coupled Problems Solutions Book in PDF, ePub and Kindle

Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.


Scientific Computing in Electrical Engineering

Scientific Computing in Electrical Engineering
Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2013-11-27
Genre: Mathematics
ISBN: 3642558720

Download Scientific Computing in Electrical Engineering Book in PDF, ePub and Kindle


Transient Analysis of Power Systems

Transient Analysis of Power Systems
Author: Juan A. Martinez-Velasco
Publisher: John Wiley & Sons
Total Pages: 661
Release: 2015-01-27
Genre: Technology & Engineering
ISBN: 1118352343

Download Transient Analysis of Power Systems Book in PDF, ePub and Kindle

The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance. This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability. Key features: Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients. Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging). Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems. Illustrates the application of EMT tools to the analysis and simulation of smart grids.


SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS

SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS
Author:
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Download SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS Book in PDF, ePub and Kindle

Abstract : Integrated circuit technology has gone through several decades of aggressive scaling.It is increasingly challenging to analyze growing design complexity. Post-layout SPICE simulation can be computationally prohibitive due to the huge amount of parasitic elements, which can easily boost the computation and memory cost. As the decrease in device size, the circuits become more vulnerable to process variations. Designers need to statistically simulate the probability that a circuit does not meet the performance metric, which requires millions times of simulations to capture rare failure events. Recent, multiprocessors with heterogeneous architecture have emerged as mainstream computing platforms. The heterogeneous computing platform can achieve highthroughput energy efficient computing. However, the application of such platform is not trivial and needs to reinvent existing algorithms to fully utilize the computing resources. This dissertation presents several new algorithms to address those aforementioned two significant and challenging issues on the heterogeneous platform. Harmonic Balance (HB) analysis is essential for efficient verification of large postlayout RF and microwave integrated circuits (ICs). However, existing methods either suffer from excessively long simulation time and prohibitively large memory consumption or exhibit poor stability. This dissertation introduces a novel transient-simulation guided graph sparsification technique, as well as an efficient runtime performance modeling approach tailored for heterogeneous manycore CPU-GPU computing system to build nearly-optimal subgraph preconditioners that can lead to minimum HB simulation runtime. Additionally, we propose a novel heterogeneous parallel sparse block matrix algorithm by taking advantages of the structure of HB Jacobian matrices as well as GPU's streaming multiprocessors to achieve optimal workload balancing during the preconditioning phase of HB analysis. We also show how the proposed preconditioned iterative algorithm can efficiently adapt to heterogeneous computing systems with different CPU and GPU computing capabilities. Extensive experimental results show that our HB solver can achieve up to 20X speedups and 5X memory reduction when compared with the state-of-the-art direct solver highly optimized for twelve-core CPUs. In nowadays variation-aware IC designs, cell characterizations and SRAM memory yield analysis require many thousands or even millions of repeated SPICE simulations for relatively small nonlinear circuits. In this dissertation, for the first time, we present a massively parallel SPICE simulator on GPU, TinySPICE, for efficiently analyzing small nonlinear circuits. TinySPICE integrates a highly-optimized shared-memory based matrix solver and fast parametric three-dimensional (3D) LUTs based device evaluation method. A novel circuit clustering method is also proposed to improve the stability and efficiency of the matrix solver. Compared with CPU-based SPICE simulator, TinySPICE achieves up to 264X speedups for parametric SRAM yield analysis without loss of accuracy.


Simulation and Verification of Electronic and Biological Systems

Simulation and Verification of Electronic and Biological Systems
Author: Peng Li
Publisher: Springer Science & Business Media
Total Pages: 208
Release: 2011-01-12
Genre: Technology & Engineering
ISBN: 9400701497

Download Simulation and Verification of Electronic and Biological Systems Book in PDF, ePub and Kindle

Simulation and Verification of Electronic and Biological Systems provides a showcase for the Circuit and Multi-Domain Simulation Workshop held in San Jose, California, USA, on November 5, 2009. The nine chapters are contributed by experts in the field and provide a broad discussion of recent developments on simulation, modeling and verification of integrated circuits and biological systems. Specific topics include large scale parallel circuit simulation, industrial practice of fast SPICE simulation, structure-preserving model order reduction of interconnects, advanced simulation techniques for oscillator networks, dynamic stability of static memories and biological systems as well as verification of analog integrated circuits. Simulation and verification are fundamental enablers for understanding, analyzing and designing an extremely broad range of engineering and biological circuits and systems. The design of nanometer integrated electronic systems and emerging biomedical applications have stimulated the development of novel simulation and verification techniques and methodologies. Simulation and Verification of Electronic and Biological Systems provides a broad discussion of recent advances on simulation, modeling and verification of integrated circuits and biological systems and offers a basis for stimulating new innovations.