Organic Semiconductor Lasers With Two Dimensional Distributed Feedback PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Organic Semiconductor Lasers With Two Dimensional Distributed Feedback PDF full book. Access full book title Organic Semiconductor Lasers With Two Dimensional Distributed Feedback.

Low Threshold Organic Semiconductor Lasers

Low Threshold Organic Semiconductor Lasers
Author: Yue Wang
Publisher: Springer Science & Business Media
Total Pages: 174
Release: 2013-10-01
Genre: Science
ISBN: 3319012673

Download Low Threshold Organic Semiconductor Lasers Book in PDF, ePub and Kindle

This thesis focuses on two areas - the development of miniature plastic lasers that can be powered by LEDs, and the application of these lasers as highly sensitive sensors for vapours of nitroaromatic explosives (e.g. TNT). Polymer lasers are extremely compact visible lasers; the research described in the thesis is groundbreaking, driving forward the technology and physical understanding to allow these lasers to be routinely pumped by a single high-power LED. A notable advance in the work is the demonstration of nanoimprinted polymer lasers, which exhibit the world's lowest pump threshold densities by two orders of magnitude. The thesis also advances the application of these compact, novel lasers as highly sensitive detectors of explosive vapours, demonstrating that rapid detection can be achieved when microporous polymers are used. This work also demonstrates a prototype CMOS-based microsystem sensor for explosive vapours, exploiting a new detection approach.


Organic Semiconductor Lasers and Tailored Nanostructures for Raman Spectroscopy

Organic Semiconductor Lasers and Tailored Nanostructures for Raman Spectroscopy
Author: Liu, Xin
Publisher: KIT Scientific Publishing
Total Pages: 248
Release: 2015-06-19
Genre: Technology (General)
ISBN: 3731503700

Download Organic Semiconductor Lasers and Tailored Nanostructures for Raman Spectroscopy Book in PDF, ePub and Kindle

This work presents the application of organic semiconductor distributed feedback laser as free-space excitation source in Raman spectroscopy. Surface-enhanced Raman scattering effect is exploited to improve the detection sensitivity. The SERS conditionis achiedved by using substrates consisting of gold-coated polymeric nanopillar arrays. The organic-laser-excited SERS measurements are applied to verify the concentration variation of biomolecule adenosine in aqueous solutions.


Low threshold organic thin-film laser devices

Low threshold organic thin-film laser devices
Author: Christian Karnutsch
Publisher: Cuvillier Verlag
Total Pages: 156
Release: 2007-07-25
Genre: Science
ISBN: 3736923066

Download Low threshold organic thin-film laser devices Book in PDF, ePub and Kindle

In this work, low threshold organic semiconductor lasers emitting throughout the entire visible wavelength range are presented. Organic semiconductor lasers (OSLs) are a fascinating class of laser devices that have a huge potential for sensing and display applications. Their ease of fabrication and tuneability across the full visible wavelength range are only a few of their advantageous properties which fueled intense research towards organic laser devices. For future electrically pumped organic lasers, as well as for compact (laser) diode-pumped devices, reduction of the organic laser threshold is of crucial importance, since low optically pumped thresholds translate into lower current densities required for injection lasing. With blue-emitting one-dimensional first- and second-order distributed feedback (DFB) lasers based on the copolymer BN-PFO , laser operation in a wavelength range from 438 to 459 nm was realized. For an optimized second-order laser, we obtained a very low threshold energy of 280 pJ/pulse, which could be further reduced to 160 pJ/pulse by employing first-order feedback. These very low threshold values render BN-PFO a very promising material for future organic semiconductor laser diodes. Furthermore, we have investigated DFB lasers based on a mixed-order resonator concept and the polyfluorene derivative F8DP . We showed that this improved resonator concept is a very promising design which combines the advantages of first- and second-order DFB resonators. By varying the grating parameters, organic solid-state lasers with customized properties can be fabricated. Optimizing the polymer film parameters led to a very low laser threshold of 45 pJ/pulse ( 36 nJ/cm2), which is among the lowest values ever reported for organic semiconductor lasers. These DFB lasers have been optically pumped by frequency-tripled Nd:YVO4 lasers or complex optical parametric oscillator (OPO) systems, resulting in versatile but expensive and bulky laser sources. For many applications, e.g. for laser-based analytical techniques and sensors, much more compact and inexpensive all solid-state laser sources are desirable. Whilst an organic injection laser doesn’t exist, it might prove useful for numerous applications to adopt an indirect electrical pumping scheme using efficient and compact electrically driven light sources to pump an OSL optically. The recent evolution of blue-violet emitting inorganic (In)GaN laser diodes renders them attractive as such a pump source. During the course of this work, a very compact all solid-state laser system using a low-cost pulsed (In)GaN laser diode has been realized. Laser emission spanning the complete visible wavelength range was achieved by employing a variety of organic materials and resonator geometries. As a future asset, these hybrid organic/inorganic lasers could be made mechanically tuneable by either using a wedge-shaped organic thin-film or by spatially varying the lattice period. Both concepts alter the emission wavelength when the organic laser is moved mechanically in front of the focussed pump laser diode. These hybrid laser systems could provide the basis for innovative portable analysis systems, e.g. for medical point-of-care sensor systems. An even lower-cost pumping scheme based on LEDs could lead to extremely low-cost and versatile laser sources emitting throughout the entire visible wavelength range. But the ultimate goal remains the realization of an electrically pumped organic laser diode. In the course of this thesis, a self-consistent numerical simulation tool was employed to carry out comprehensive investigations of the influence of various parameters on the laser threshold in electrically pumped multilayer OSLs. It could be shown that the threshold current densities necessary for lasing in an organic laser diode structure will be of the order of 500-1000 A/cm2. The main reasons for these high threshold values are: • waveguide losses • excited state absorptions • bimolecular annihilation processes In order to reduce the waveguide losses, two concepts have been discussed: either using thin active layers in combination with low-loss transparent conductive oxide (TCO) electrode materials, or using thick (doped) multilayer devices with metal electrodes. The threshold current density is also negatively influenced by polaron and excited state absorption. The dimensionless quantity, ς has been introduced to quantify the effect of polaron and excited state absorption in the device. It saturates at increasing current densities, implying that polaron- and triplet-triplet absorption might prevent electrically pumped devices from lasing for all current densities, depending on the respective absorption cross sections. It was shown that ς does not strongly depend on the device geometry. For the studied devices, an increased charge carrier mobility in the transport layers does not reduce polaron absorption significantly, but if the mobilities in the emission layer and in the transport layers could be increased simultaneously, the effect of polaron absorption would be reduced. We also investigated the influence of bimolecular annihilation processes on the threshold current density using numerical simulations. For a set of typical annihilation and material parameters, the threshold current density was calculated to be ≈560 A/cm2. It was found to depend critically on the emission layer thickness. Singlet-polaron and singlet-triplet annihilations were identified as the dominating quenching processes for the investigated parameter range. According to the presented numerical simulations, organic laser diodes will require very high current densities, hence the current durability of organic materials will be an important issue. Dielectric discharges and thermal breakdown were identified as the major causes for catastrophic device failure under high excitation conditions. Thus, thermal management was identified as a key element to improve device stability. To reduce the thermal load of the devices, high thermal conductivity substrates or pulsed operation can be employed. We were able to demonstrate that organic materials can indeed sustain the required current densities. In high current excitation experiments, more than 550 A/cm2 could be passed through a thick photocrosslinked hole-transport layer in pulsed mode. This very encouraging and significant result shows that photocrosslinked all-polymer devices might be the proper choice to realize an organic injection laser. Apart from the concepts elucidated above, further approaches to an organic injection laser exist. Recently, ambipolar light-emitting organic field-effect transistor (OFET) geometries were discussed in the context of OSLs. But to date, the achieved current densities are typically about one order of magnitude too low. Another promising novel approach is to induce capacitively coupled lasing action in OSLs. An organic active material is sandwiched between two dielectric-clad electrodes and excited via an AC voltage. This is advantageous as it avoids the optical losses associated with injecting electrodes close to the active layer. This concept will be evaluated in the near future in our group at the LTI .


Organic Lasers and Organic Photonics

Organic Lasers and Organic Photonics
Author: DUARTE
Publisher: Iph001
Total Pages: 300
Release: 2018-12-04
Genre: Science
ISBN: 9780750315708

Download Organic Lasers and Organic Photonics Book in PDF, ePub and Kindle


Organic Solid-State Lasers

Organic Solid-State Lasers
Author: Sébastien Forget
Publisher: Springer
Total Pages: 179
Release: 2013-07-03
Genre: Science
ISBN: 3642367054

Download Organic Solid-State Lasers Book in PDF, ePub and Kindle

Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.


Organic Semiconductor Lasers

Organic Semiconductor Lasers
Author: Ying Yang
Publisher:
Total Pages: 221
Release: 2010
Genre: Light emitting diodes
ISBN:

Download Organic Semiconductor Lasers Book in PDF, ePub and Kindle


Device Architecture and Materials for Organic Light-Emitting Devices

Device Architecture and Materials for Organic Light-Emitting Devices
Author: Sarah Schols
Publisher: Springer Science & Business Media
Total Pages: 163
Release: 2011-05-10
Genre: Science
ISBN: 9400716087

Download Device Architecture and Materials for Organic Light-Emitting Devices Book in PDF, ePub and Kindle

Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 μs can be applied to this structure without affecting the light intensity, suggesting that pulsed excitation might be useful to reduce the accumulation of triplets in the device. The combination of all these properties makes the OLED with field-effect electron transport particularly interesting for waveguide devices and future electrically pumped lasers. In addition, triplet-emitter doped organic materials, as well as the use of triplet scavengers in conjugated polymers are investigated.


Ultrafast Dynamics and Laser Action of Organic Semiconductors

Ultrafast Dynamics and Laser Action of Organic Semiconductors
Author: Zeev Valy Vardeny
Publisher: CRC Press
Total Pages: 324
Release: 2009-01-21
Genre: Science
ISBN: 142007282X

Download Ultrafast Dynamics and Laser Action of Organic Semiconductors Book in PDF, ePub and Kindle

Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that