Optimization Of Natural Gas Allocation Through Computer Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimization Of Natural Gas Allocation Through Computer Simulation PDF full book. Access full book title Optimization Of Natural Gas Allocation Through Computer Simulation.

Gas Allocation Optimization Methods in Artificial Gas Lift

Gas Allocation Optimization Methods in Artificial Gas Lift
Author: Ehsan Khamehchi
Publisher: Springer
Total Pages: 55
Release: 2016-12-31
Genre: Technology & Engineering
ISBN: 3319514512

Download Gas Allocation Optimization Methods in Artificial Gas Lift Book in PDF, ePub and Kindle

This Brief offers a comprehensive study covering the different aspects of gas allocation optimization in petroleum engineering. It contains different methods of defining the fitness function, dealing with constraints and selecting the optimizer; in each chapter a detailed literature review is included which covers older and important studies as well as recent publications. This book will be of use for production engineers and students interested in gas lift optimization.


Evaluating Gas Network Capacities

Evaluating Gas Network Capacities
Author: Thorsten Koch
Publisher: SIAM
Total Pages: 368
Release: 2015-03-17
Genre: Mathematics
ISBN: 1611973694

Download Evaluating Gas Network Capacities Book in PDF, ePub and Kindle

This book addresses a seemingly simple question: Can a certain amount of gas be transported through a pipeline network? The question is difficult, however, when asked in relation to a meshed nationwide gas transportation network and when taking into account the technical details and discrete decisions, as well as regulations, contracts, and varying demands, involved. This book provides an introduction to the field of gas transportation planning and discusses in detail the advantages and disadvantages of several mathematical models that address gas transport within the context of its technical and regulatory framework, shows how to solve the models using sophisticated mathematical optimization algorithms, and includes examples of large-scale applications of mathematical optimization to this real-world industrial problem. Readers will also find a glossary of gas transport terms, tables listing the physical and technical quantities and constants used throughout the book, and a reference list of regulation and gas business literature.


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences
Author: W. H. Shafer
Publisher: Springer Science & Business Media
Total Pages: 311
Release: 2012-12-06
Genre: Science
ISBN: 1468442295

Download Masters Theses in the Pure and Applied Sciences Book in PDF, ePub and Kindle

Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing. house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 25 (thesis year 1980) a total of 10,308 theses titles from 27 Canadian and 214 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. While Volume 25 reports theses submitted in 1980, on occasion, certain universities do report theses submitted in previous years but not reported at the time.


Optimization of Natural Gas Distribution in Pipeline Networks

Optimization of Natural Gas Distribution in Pipeline Networks
Author: Antoine Pruvot
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Optimization of Natural Gas Distribution in Pipeline Networks Book in PDF, ePub and Kindle

In natural gas pipeline transportation systems, network operators play a crucial role. Through compression power and pipeline geometry, they master the physics of the systems, allowing them to control the flow of gas between two points. Their decisions impact the entire production chain, from the suppliers to the consumers. Consequently, the management of pipeline systems requires an in-depth analysis of the influence of each decision. Each pressure change in the system may seriously impact the flow of natural gas, deeply modifying the revenue of the entire production and how it is divided between the different actors of the market. It is fundamental to understand how to master the system in order to control the money generated.From an economic point of view, natural gas pipeline production, transportation and sale creates wealth divided between the different actors in the sector: the profit of the producer, the consumer welfare and a combination of both for the network operator. This social wealth, should be maximized in order to generate the most benefit from the network for society. In order to do so, it is necessary to understand how much gas is flowing through each pipeline. If pressure values are fixed on an arbitrary basis, the dispatch of natural gas in the network will not be optimized. The loss of social wealth generated can be considerable given the important volumes transported through pipeline those days. In the market of natural gas transportation, if the pressure at the nodes is wrongly chosen, it could be disastrous for a company. How could any producing/transporting company avoid wasting this significant amount of money? What are the solutions available for the natural gas pipeline engineers to dispatch natural gas in order to maximize the social wealth generated?This issue can be stated in the corresponding two situations: For the construction of a new pipeline network, how should the geometry of the different pipes be chosen in order to transport natural gas in an optimal way? For an existing pipeline network, how should the pressure drops be chosen to maximize the social wealth of the producing/transporting company?The goal of this study is to provide network operators with the parameters to answer those situations. By fixing the pressure values at the nodes of the system, it is possible to maximize the economic value generated by the natural gas transportation and sales. Additionally, running the simulation on different natural gas network configurations = inform the company on how to choose the ideal geometry factors of each branch of pipeline.Midthun et al. (2009) suggested two different methods to address this problem. The first one, the Independent Static Flow (ISF) method is a straightforward way to find a solution. Neglecting the physics of natural gas, this method assumes that every pipe of the system is running at maximum capacity. The method is very easy to use and implement. Nevertheless, the solution provided is unrealistic: as the physics of natural gas is not respected, it is impossible to practically apply the method on a real network. Hence, this method can only be used to give an idea of how to regulate the flows, and an operator could only try to guess the pressure values at the nodes that could help to get closer this ideal situation on his network. The loss of economic value of natural gas from the arbitrary choices of the operator is a concern. Additionally, the solution arbitrary applied by the operator will generate far less social wealth than the ideal solution given through ISF Method due to the application of the physics of natural gas transportation.To address this issue, the second method proposed by Midthun et al. (2009), the Taylor Development Method, relies on an approximation of the underlying physics to solve for the optimal solution. In order to improve the relevance of the results to the constraints of the pipeline network, Midthun et al. decided to modify the nonlinear constraints of the system, .However, the accuracy of this approach has a price: the more accurate the solution, the more computationally difficult the optimization becomes. Figure 1: The fragile optimum for the Taylor Development MethodFigure 1 illustrates this complex choice. Thus, the user remains struggled in a compromise to find the right equilibrium between quality of the result and time (and so money) of computation. The situation is even worse for large network, as the number of constraining equations greatly increases for each additional pipeline on a network.This compromise between size of network/quality of results on one hand and computational feasibility on the other hand cannot be satisfying. Today, natural gas companies have to deal with networks of several hundred of pipes. An accurate solution would be too hard to solve for, and decreasing the accuracy expectations may cause a large waste of social wealth. In order to avoid this loss, this paper is suggesting another method, based on Ayala et. al.'s (2013) Linear-Pressure Analog Method. Instead of adding extra constraining equations to take account for the nonlinearities of natural gas physics, it is possible to simplify the system. Assuming a linear relationship between natural gas flow rate with respect to pressure drop, the system become smaller and easier to solve. In other words, physics of natural gas is assumed to be similar to the one of laminar liquid flows. From here, a correction is applied to the solution found, taking account for the nonlinearities inherent in real natural gas behavior. The process is iterated until convergence is reached. This method is both feasible and accurate with limited computational demands. Consequently, with any standard computer, a production/transportation company can obtain the ideal and realistic dispatch of natural gas in its network, and optimize the economic value generated by its natural gas transportation.


Modeling, Control, and Optimization of Natural Gas Processing Plants

Modeling, Control, and Optimization of Natural Gas Processing Plants
Author: William A. Poe
Publisher: Gulf Professional Publishing
Total Pages: 302
Release: 2016-09-09
Genre: Technology & Engineering
ISBN: 0128029811

Download Modeling, Control, and Optimization of Natural Gas Processing Plants Book in PDF, ePub and Kindle

Modeling, Control, and Optimization of Natural Gas Processing Plants presents the latest on the evolution of the natural gas industry, shining a light on the unique challenges plant managers and owners face when looking for ways to optimize plant performance and efficiency, including topics such as the various feed gas compositions, temperatures, pressures, and throughput capacities that keep them looking for better decision support tools. The book delivers the first reference focused strictly on the fast-growing natural gas markets. Whether you are trying to magnify your plants existing capabilities or are designing a new facility to handle more feedstock options, this reference guides you by combining modeling control and optimization strategies with the latest developments within the natural gas industry, including the very latest in algorithms, software, and real-world case studies. Helps users adapt their natural gas plant quickly with optimization strategies and advanced control methods Presents real-world application for gas process operations with software and algorithm comparisons and practical case studies Provides coverage on multivariable control and optimization on existing equipment Allows plant managers and owners the tools they need to maximize the value of the natural gas produced


Energy Research Abstracts

Energy Research Abstracts
Author:
Publisher:
Total Pages: 504
Release: 1986
Genre: Power resources
ISBN:

Download Energy Research Abstracts Book in PDF, ePub and Kindle


Novel Cost Allocation Framework for Natural Gas Processes

Novel Cost Allocation Framework for Natural Gas Processes
Author: Won-Hyouk Jang
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Novel Cost Allocation Framework for Natural Gas Processes Book in PDF, ePub and Kindle

Natural gas plants can have multiple owners for raw natural gas streams and processing facilities as well as for multiple products. Therefore, a proper cost allocation method is necessary for taxation of the profits from natural gas and crude oil as well as for cost sharing among gas producers. However, cost allocation methods most often used in accounting, such as the sales value method and the physical units method, may produce unacceptable or even illogical results when applied to natural gas processes. Wright and Hall (1998) proposed a new approach called the design benefit method (DBM), based upon engineering principles, and Wright et al. (2001) illustrated the potential of the DBM for reliable cost allocation for natural gas processes by applying it to a natural gas process. In the present research, a rigorous modeling technique for the DBM has been developed based upon a Taylor series approximation. Also, we have investigated a cost allocation framework that determines the virtual flows, models the equipment, and evaluates cost allocation for applying the design benefit method to other scenarios, particularly those found in the petroleum and gas industries. By implementing these individual procedures on a computer, the proposed framework easily can be developed as a software package, and its application can be extended to large-scale processes. To implement the proposed cost allocation framework, we have investigated an optimization methodology specifically geared toward economic optimization problems encountered in natural gas plants. Optimization framework can provide co-producers who share raw natural gas streams and processing plants not only with optimal operating conditions but also with valuable information that can help evaluate their contracts. This information can be a reasonable source for deciding new contracts for co-producers. For the optimization framework, we have developed a genetic-quadratic search algorithm (GQSA) consisting of a general genetic algorithm and a quadratic search that is a suitable technique for solving optimization problems including process flowsheet optimization. The GQSA inherits the advantages of both genetic algorithms and quadratic search techniques, and it can find the global optimum with high probability for discontinuous as well as non-convex optimization problems much faster than general genetic algorithms.


Simulation, Integration, and Economic Analysis of Gas-to-liquid Processes

Simulation, Integration, and Economic Analysis of Gas-to-liquid Processes
Author: Buping Bao
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Simulation, Integration, and Economic Analysis of Gas-to-liquid Processes Book in PDF, ePub and Kindle

Gas-to-liquid (GTL) process involves the chemical conversion of natural gas (or other gas sources) into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. A leading GTL technology is the Fischer Tropsch process. The objective of this work is to provide a techno-economic analysis of the GTL process and to identify optimization and integration opportunities for cost saving and reduction of energy usage and environmental impact. First, a basecase flowsheet is synthesized to include the key processing steps of the plant. Then, computer-aided process simulation is carried out to determine the key mass and energy flows, performance criteria, and equipment specifications. Next, energy and mass integration studies are performed to address the following items: (a) heating and cooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tail-gas allocation, and (d) recovery of catalystsupporting hydrocarbon solvents. Finally, an economic analysis is undertaken to determine the plant capacity needed to achieve the break-even point and to estimate the return on investment for the base-case study. After integration, 884 million $/yr is saved from heat integration, 246 million $/yr from heat cogeneration, and 22 million $/yr from water management. Based on 128,000 barrels per day (BPD) of products, at least 68,000 BPD capacity is needed to keep the process profitable, with the return on investment (ROI) of 5.1%. Compared to 8 $/1000 SCF natural gas, 5 $/1000 SCF price can increase the ROI to 16.2%.