Optimal Resource Allocation In Coordinated Multi Cell Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimal Resource Allocation In Coordinated Multi Cell Systems PDF full book. Access full book title Optimal Resource Allocation In Coordinated Multi Cell Systems.

Optimal Resource Allocation in Coordinated Multi-cell Systems

Optimal Resource Allocation in Coordinated Multi-cell Systems
Author: Emil Björnson
Publisher:
Total Pages: 269
Release: 2013
Genre: Antennas (Electronics)
ISBN: 9781601986399

Download Optimal Resource Allocation in Coordinated Multi-cell Systems Book in PDF, ePub and Kindle

The use of multiple antennas at base stations is a key component in the design of cellular communication systems that can meet high-capacity demands in the downlink. Under ideal conditions, the gain of employing multiple antennas is well-recognized : the data throughput increases linearly with the number of transmit antennas if the spatial dimension is utilized to serve many users in parallel. The practical performance of multi-cell systems is, however, limited by a variety of nonidealities, such as insufficient channel knowledge, high computational complexity, heterogeneous user conditions, limited backhaul capacity, transceiver impairments, and the constrained level of coordination between base stations.


Optimal Resource Allocation in Coordinated Multi-Cell Systems

Optimal Resource Allocation in Coordinated Multi-Cell Systems
Author: Emil Björnson
Publisher: Now Pub
Total Pages: 282
Release: 2013
Genre: Technology & Engineering
ISBN: 9781601986382

Download Optimal Resource Allocation in Coordinated Multi-Cell Systems Book in PDF, ePub and Kindle

Optimal Resource Allocation in Coordinated Multi-Cell Systems provides a solid grounding and understanding for optimization of practical multi-cell systems and will be of interest to all researchers and engineers working on the practical design of such systems.


Spatial Resource Allocation in Massive MIMO Communications

Spatial Resource Allocation in Massive MIMO Communications
Author: Trinh Van Chien
Publisher: Linköping University Electronic Press
Total Pages: 66
Release: 2019-12-09
Genre:
ISBN: 9179299415

Download Spatial Resource Allocation in Massive MIMO Communications Book in PDF, ePub and Kindle

Massive MIMO (multiple-input multiple-output) is considered as an heir of the multi-user MIMO technology and it has gained lots of attention from both academia and industry since the last decade. By equipping base stations (BSs) with hundreds of antennas in a compact array or a distributed manner, this new technology can provide very large multiplexing gains by serving many users on the same time-frequency resources and thereby bring significant improvements in spectral efficiency (SE) and energy efficiency (EE) over the current wireless networks. The transmit power, pilot training, and spatial transmission resources need to be allocated properly to the users to achieve the highest possible performance. This is called resource allocation and can be formulated as design utility optimization problems. If the resource allocation in Massive MIMO is optimized, the technology can handle the exponential growth in both wireless data traffic and number of wireless devices, which cannot be done by the current cellular network technology. In this thesis, we focus on the five different resource allocation aspects in Massive MIMO communications: The first part of the thesis studies if power control and advanced coordinated multipoint (CoMP) techniques are able to bring substantial gains to multi-cell Massive MIMO systems compared to the systems without using CoMP. More specifically, we consider a network topology with no cell boundary where the BSs can collaborate to serve the users in the considered coverage area. We focus on a downlink (DL) scenario in which each BS transmits different data signals to each user. This scenario does not require phase synchronization between BSs and therefore has the same backhaul requirements as conventional Massive MIMO systems, where each user is preassigned to only one BS. The scenario where all BSs are phase synchronized to send the same data is also included for comparison. We solve a total transmit power minimization problem in order to observe how much power Massive MIMO BSs consume to provide the requested quality of service (QoS) of each user. A max-min fairness optimization is also solved to provide every user with the same maximum QoS regardless of the propagation conditions. The second part of the thesis considers a joint pilot design and uplink (UL) power control problem in multi-cell Massive MIMO. The main motivation for this work is that the pilot assignment and pilot power allocation is momentous in Massive MIMO since the BSs are supposed to construct linear detection and precoding vectors from the channel estimates. Pilot contamination between pilot-sharing users leads to more interference during data transmission. The pilot design is more difficult if the pilot signals are reused frequently in space, as in Massive MIMO, which leads to greater pilot contamination effects. Related works have only studied either the pilot assignment or the pilot power control, but not the joint optimization. Furthermore, the pilot assignment is usually formulated as a combinatorial problem leading to prohibitive computational complexity. Therefore, in the second part of this thesis, a new pilot design is proposed to overcome such challenges by treating the pilot signals as continuous optimization variables. We use those pilot signals to solve different max-min fairness optimization problems with either ideal hardware or hardware impairments. The third part of this thesis studies a two-layer decoding method that mitigates inter-cell interference in multi-cell Massive MIMO systems. In layer one, each BS estimates the channels to intra-cell users and uses the estimates for local decoding within the cell. This is followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An UL achievable SE expression is computed for arbitrary two-layer decoding schemes, while a closed form expression is obtained for correlated Rayleigh fading channels, maximum-ratio combining (MRC), and largescale fading decoding (LSFD) in the second layer. We formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since the problem is non-convex, we develop an algorithm based on the weighted minimum mean square error (MMSE) approach to obtain a stationary point with low computational complexity. Motivated by recent successes of deep learning in predicting the solution to an optimization problem with low runtime, the fourth part of this thesis investigates the use of deep learning for power control optimization in Massive MIMO. We formulate the joint data and pilot power optimization for maximum sum SE in multi-cell Massive MIMO systems, which is a non-convex problem. We propose a new optimization algorithm, inspired by the weighted MMSE approach, to obtain a stationary point in polynomial time. We then use this algorithm together with deep learning to train a convolutional neural network to perform the joint data and pilot power control in sub-millisecond runtime. The solution is suitable for online optimization. Finally, the fifth part of this thesis considers a large-scale distributed antenna system that serves the users by coherent joint transmission called Cell-free Massive MIMO. For a given user set, only a subset of the access points (APs) is likely needed to satisfy the users' performance demands. To find a flexible and energy-efficient implementation, we minimize the total power consumption at the APs in the DL, considering both the hardware consumed and transmit powers, where APs can be turned off to reduce the former part. Even though this is a nonconvex optimization problem, a globally optimal solution is obtained by solving a mixed-integer second-order cone program (SOCP). We also propose low-complexity algorithms that exploit group-sparsity or received power strength in the problem formulation.


Resource Allocation for Max-Min Fairness in Multi-Cell Massive MIMO

Resource Allocation for Max-Min Fairness in Multi-Cell Massive MIMO
Author: Trinh van Chien
Publisher: Linköping University Electronic Press
Total Pages: 36
Release: 2018-01-11
Genre:
ISBN: 917685387X

Download Resource Allocation for Max-Min Fairness in Multi-Cell Massive MIMO Book in PDF, ePub and Kindle

Massive MIMO (multiple-input multiple-output) is considered as an heir of the multi-user MIMO technology and it has recently gained lots of attention from both academia and industry. By equipping base stations (BSs) with hundreds of antennas, this new technology can provide very large multiplexing gains by serving many users on the same time-frequency resources and thereby bring significant improvements in spectral efficiency (SE) and energy efficiency (EE) over the current wireless networks. The transmit power, pilot training, and spatial transmission resources need to be allocated properly to the users to achieve the highest possible performance. This is called resource allocation and can be formulated as design utility optimization problems. If the resource allocation in Massive MIMO is optimized, the technology can handle the exponential growth in both wireless data traffic and number of wireless devices, which cannot be done by the current cellular network technology. In this thesis, we focus on two resource allocation aspects in Massive MIMO: The first part of the thesis studies if power control and advanced coordinated multipoint (CoMP) techniques are able to bring substantial gains to multi-cell Massive MIMO systems compared to the systems without using CoMP. More specifically, we consider a network topology with no cell boundary where the BSs can collaborate to serve the users in the considered coverage area. We focus on a downlink (DL) scenario in which each BS transmits different data signals to each user. This scenario does not require phase synchronization between BSs and therefore has the same backhaul requirements as conventional Massive MIMO systems, where each user is preassigned to only one BS. The scenario where all BSs are phase synchronized to send the same data is also included for comparison. We solve a total transmit power minimization problem in order to observe how much power Massive MIMO BSs consume to provide the requested quality of service (QoS) of each user. A max-min fairness optimization is also solved to provide every user with the same maximum QoS regardless of the propagation conditions. The second part of the thesis considers a joint pilot design and uplink (UL) power control problem in multi-cell Massive MIMO. The main motivation for this work is that the pilot assignment and pilot power allocation is momentous in Massive MIMO since the BSs are supposed to construct linear detection and precoding vectors from the channel estimates. Pilot contamination between pilot-sharing users leads to more interference during data transmission. The pilot design is more difficult if the pilot signals are reused frequently in space, as in Massive MIMO, which leads to greater pilot contamination effects. Related works have only studied either the pilot assignment or the pilot power control, but not the joint optimization. Furthermore, the pilot assignment is usually formulated as a combinatorial problem leading to prohibitive computational complexity. Therefore, in the second part of this thesis, a new pilot design is proposed to overcome such challenges by treating the pilot signals as continuous optimization variables. We use those pilot signals to solve different max-min fairness optimization problems with either ideal hardware or hardware impairments.


Machine Learning for Future Wireless Communications

Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Publisher: John Wiley & Sons
Total Pages: 490
Release: 2020-02-10
Genre: Technology & Engineering
ISBN: 1119562252

Download Machine Learning for Future Wireless Communications Book in PDF, ePub and Kindle

A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.


Cloud Radio Access Networks

Cloud Radio Access Networks
Author: Tony Q. S. Quek
Publisher: Cambridge University Press
Total Pages: 499
Release: 2017-02-02
Genre: Computers
ISBN: 1107142660

Download Cloud Radio Access Networks Book in PDF, ePub and Kindle

The first book on Cloud Radio Access Networks (C-RANs), covering fundamental theory, current techniques, and potential applications.


Optimizing Massive MIMO

Optimizing Massive MIMO
Author: Hei Victor Cheng
Publisher: Linköping University Electronic Press
Total Pages: 63
Release: 2018-04-11
Genre:
ISBN: 9176853276

Download Optimizing Massive MIMO Book in PDF, ePub and Kindle

The past decades have seen a rapid growth of mobile data traffic,both in terms of connected devices and data rate. To satisfy the evergrowing data traffic demand in wireless communication systems, thecurrent cellular systems have to be redesigned to increase both spectralefficiency and energy efficiency. Massive MIMO(Multiple-Input-Multiple-Output) is one solution that satisfy bothrequirements. In massive MIMO systems, hundreds of antennas areemployed at the base station to provide service to many users at thesame time and frequency. This enables the system to serve the userswith uniformly good quality of service simultaneously, with low-costhardware and without using extra bandwidth and energy. To achievethis, proper resource allocation is needed. Among the availableresources, transmit power beamforming are the most important degrees offreedom to control the spectral efficiency and energy efficiency. Dueto the use of excessive number of antennas and low-end hardware at thebase station, new aspects of power allocation and beamforming compared to currentsystems arises. In the first part of the thesis, new uplink power allocation schemes that based on long term channel statistics isproposed. Since quality of the channel estimates is crucial in massive MIMO, in addition to data power allocation, joint power allocationthat includes the pilot power as additional variable should be considered. Therefore a new framework for power allocation thatmatches practical systems is developed, as the methods developed in the literature cannot be applied directly to massive MIMO systems. Simulation results confirm the advantages brought by the the proposed new framework. In the second part, we introduces a new approach to solve the joint precoding and power allocation for different objective in downlink scenarios by a combination of random matrix theory and optimization theory. The new approach results in a simplified problem that, though non-convex, obeys a simple separable structure. Simulation results showed that the proposed scheme provides large gains over heuristic solutions when the number of users in the cell is large, which is suitable for applying in massive MIMO systems. In the third part we investigate the effects of using low-end amplifiers at the basestations. The non-linear behavior of power consumption in these amplifiers changes the power consumption model at the basestation, thereby changes the power allocation and beamforming design. Different scenarios are investigated and resultsshow that a certain number of antennas can be turned off in some scenarios. In the last part we consider the use of non-orthogonal-multiple-access (NOMA) inside massive MIMO systems in practical scenarios where channel state information (CSI) is acquired through pilot signaling. Achievable rate analysis is carried out for different pilot signaling schemes including both uplink and downlink pilots. Numerical results show that when downlink CSI is available at the users, our proposed NOMA scheme outperforms orthogonal schemes. However with more groups of users present in the cell, it is preferable to use multi-user beamforming in stead of NOMA.


Wireless Communication with Artificial Intelligence

Wireless Communication with Artificial Intelligence
Author: Anuj Singal
Publisher: CRC Press
Total Pages: 369
Release: 2022-09-16
Genre: Technology & Engineering
ISBN: 1000645320

Download Wireless Communication with Artificial Intelligence Book in PDF, ePub and Kindle

This reference text discusses advances in wireless communication, design challenges, and future research directions to design reliable wireless communication. The text discusses emerging technologies including wireless sensor networks, Internet of Things (IoT), cloud computing, mm-Wave, Massive MIMO, cognitive radios (CR), visible light communication (VLC), wireless optical communication, signal processing, and channel modeling. The text covers artificial intelligence-based applications in wireless communication, machine learning techniques and challenges in wireless sensor networks, and deep learning for channel and bandwidth estimation during optical wireless communication. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering.


Wireless Coordinated Multicell Systems

Wireless Coordinated Multicell Systems
Author: Duy H. N. Nguyen
Publisher: Springer
Total Pages: 126
Release: 2014-05-15
Genre: Computers
ISBN: 3319063375

Download Wireless Coordinated Multicell Systems Book in PDF, ePub and Kindle

This SpringerBrief discusses the current research on coordinated multipoint transmission/reception (CoMP) in wireless multi-cell systems. This book analyzes the structure of the CoMP precoders and the message exchange mechanism in the CoMP system in order to reveal the advantage of CoMP. Topics include interference management in wireless cellular networks, joint signal processing, interference coordination, uplink and downlink precoding and system models. After an exploration of the motivations and concepts of CoMP, the authors present the architectures of a CoMP system. Practical implementation and operational challenges of CoMP are discussed in detail. Also included is a review of CoMP architectures and deployment scenarios in the LTE-Advanced standard. Readers are exposed to the latest multiuser precoding designs for the CoMP system under two operating modes, interference aware and interference coordination. Wireless Coordinated Multi cell Systems: Architectures and Precoding Designs is a concise and approachable tool for researchers, professionals and advanced-level students interested in wireless communications and networks.