Optical Studies Of The Vibrational Properties Of Disordered Solids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Studies Of The Vibrational Properties Of Disordered Solids PDF full book. Access full book title Optical Studies Of The Vibrational Properties Of Disordered Solids.

Metals, Superconductors, Magnetic Materials, Liquids Disordered Solids, Optical Properties

Metals, Superconductors, Magnetic Materials, Liquids Disordered Solids, Optical Properties
Author:
Publisher: Elsevier
Total Pages: 487
Release: 2012-12-02
Genre: Science
ISBN: 0444599894

Download Metals, Superconductors, Magnetic Materials, Liquids Disordered Solids, Optical Properties Book in PDF, ePub and Kindle

Dynamical Properties of Solids, Volume 4: Disordered Solids, Optical Properties focuses on the lattice dynamical properties of noncrystalline and disordered solids and optical properties of crystalline solids. The selection first elaborates on the vibrational properties of amorphous solids and computer experiments and disordered solids. Topics include thermal and electrical transport, density of states, numerical methods, localization, low frequency modes, and theoretical background. The text then takes a look at the morphic effects in lattice dynamics, including normal coordinate formalism, electric-field-induced infrared absorption and Raman scattering, stress-induced changes in the phonon frequencies, and the effect of time reversal on the symmetry of the long-wavelength optical. The manuscript examines the absorption of infrared radiation by multiphonon processes in solids, as well as theoretical studies of infrared absorption in the multiphonon region and experimental studies of infrared absorption at frequencies above the characteristic lattice vibration frequencies. The selection is a dependable source of data for researchers interested in the optical properties of crystalline solids and lattice dynamical properties of noncrystalline and disordered solids.


Vibrational Properties of Solids

Vibrational Properties of Solids
Author: Gideon Gilat
Publisher: Elsevier
Total Pages: 445
Release: 2012-12-02
Genre: Science
ISBN: 032315008X

Download Vibrational Properties of Solids Book in PDF, ePub and Kindle

Methods in Computational Physics, Volume 15: Vibrational Properties of Solids explores the application of computational methods to delineate microscopic vibrational behavior. This book is composed of nine chapters that further illustrate the utility of these methods to ordered lattices, quantum solids, impurity modes, surface modes, and amorphous solids. The opening chapters present the basic theoretical models and their computational aspects for different solids of diverse chemical nature, together with some methods of automation and computation in the highly sophisticated experiments in inelastic scattering of neutrons. These topics are followed by a discussion on how group theoretical methods treated by computers can yield the proper symmetry assignments of phonon eigenvalues and eigenstates. Considerable chapters are devoted to the different applications of traditional lattice dynamics, each having its own computational ramification. Other chapters survey the properties of solids that mostly involve integrations over the Brillouin zone. The last chapter concerns the dynamic or time-dependent aspect of lattice dynamics, namely, the calculation of thermal and electric conductivities in some models of solids. This book is of great benefit to geoscientists, physicists, and mathematicians.


Theory of Disordered Solids

Theory of Disordered Solids
Author: Alessio Zaccone
Publisher: Springer Nature
Total Pages: 310
Release: 2023-06-30
Genre: Science
ISBN: 303124706X

Download Theory of Disordered Solids Book in PDF, ePub and Kindle

This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material. This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science.


Optical Absorption of Impurities and Defects in Semiconducting Crystals

Optical Absorption of Impurities and Defects in Semiconducting Crystals
Author: Bernard Pajot
Publisher: Springer Science & Business Media
Total Pages: 532
Release: 2012-08-28
Genre: Science
ISBN: 3642180183

Download Optical Absorption of Impurities and Defects in Semiconducting Crystals Book in PDF, ePub and Kindle

This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.


Optical Properties of Excited States in Solids

Optical Properties of Excited States in Solids
Author: Baldassare di Bartolo
Publisher: Springer Science & Business Media
Total Pages: 749
Release: 2012-12-06
Genre: Science
ISBN: 146153044X

Download Optical Properties of Excited States in Solids Book in PDF, ePub and Kindle

This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.


Isotope-Based Quantum Information

Isotope-Based Quantum Information
Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
Total Pages: 133
Release: 2012-05-26
Genre: Computers
ISBN: 3642287506

Download Isotope-Based Quantum Information Book in PDF, ePub and Kindle

The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.


Vibrational Spectroscopy of Solids

Vibrational Spectroscopy of Solids
Author: Peter Miles Anson Sherwood
Publisher: CUP Archive
Total Pages: 276
Release: 1972-09-21
Genre: Science
ISBN: 9780521084826

Download Vibrational Spectroscopy of Solids Book in PDF, ePub and Kindle

This 1972 monograph is devoted to the analysis and interpretation of the infrared and Raman spectra of solid compounds, frequently used for their identification and characterization. It was thought unsatisfactory to analyse such spectra by the theory applicable to gas-phase samples, though this was frequently done. Furthermore, the results obtained by far infrared and laser Raman spectrometers, which detect the movement of atoms and/or molecules as a whole, had no gas-phase analogy. A separate approach to solid state vibrational spectra was therefore proposed within this volume. Dr Sherwood describes the solid state physics of vibrational spectroscopy and extends it to the more complex structures of low symmetry. He assumes an understanding of the infrared and Raman spectra of gases.