Optical Electrical And Thermal Modelling Of Nanoscale Plasmonic Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Electrical And Thermal Modelling Of Nanoscale Plasmonic Devices PDF full book. Access full book title Optical Electrical And Thermal Modelling Of Nanoscale Plasmonic Devices.

Plasmon-enhanced light-matter interactions

Plasmon-enhanced light-matter interactions
Author: Peng Yu
Publisher: Springer Nature
Total Pages: 348
Release: 2022-03-01
Genre: Science
ISBN: 303087544X

Download Plasmon-enhanced light-matter interactions Book in PDF, ePub and Kindle

This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.


Modeling Self-Heating Effects in Nanoscale Devices

Modeling Self-Heating Effects in Nanoscale Devices
Author: Katerina Raleva
Publisher: Morgan & Claypool Publishers
Total Pages: 108
Release: 2017-09-13
Genre: Science
ISBN: 1681741237

Download Modeling Self-Heating Effects in Nanoscale Devices Book in PDF, ePub and Kindle

It is generally acknowledged that modeling and simulation are preferred alternatives to trial and error approaches to semiconductor fabrication in the present environment, where the cost of process runs and associated mask sets is increasing exponentially with successive technology nodes. Hence, accurate physical device simulation tools are essential to accurately predict device and circuit performance. Accurate thermal modelling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modelling methods that must be employed in order to determine a device's temperature profile.


Modeling Self-heating Effects in Nanoscale Devices

Modeling Self-heating Effects in Nanoscale Devices
Author: Katerina Raleva
Publisher:
Total Pages: 94
Release: 2017
Genre: TECHNOLOGY & ENGINEERING
ISBN: 9781681742519

Download Modeling Self-heating Effects in Nanoscale Devices Book in PDF, ePub and Kindle

Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.


Thermoplasmonics

Thermoplasmonics
Author: Guillaume Baffou
Publisher: Cambridge University Press
Total Pages: 310
Release: 2017-10-19
Genre: Science
ISBN: 1108307868

Download Thermoplasmonics Book in PDF, ePub and Kindle

Plasmonics is an important branch of optics concerned with the interaction of metals with light. Under appropriate illumination, metal nanoparticles can exhibit enhanced light absorption, becoming nanosources of heat that can be precisely controlled. This book provides an overview of the exciting new field of thermoplasmonics and a detailed discussion of its theoretical underpinning in nanophotonics. This topic has developed rapidly in the last decade, and is now a highly-active area of research due to countless applications in nanoengineering and nanomedicine. These important applications include photothermal cancer therapy, drug and gene delivery, nanochemistry and photothermal imaging. This timely and self-contained text is suited to all researchers and graduate students working in plasmonics, nano-optics and thermal-induced processes at the nanoscale.


Nanophotonics with Surface Plasmons

Nanophotonics with Surface Plasmons
Author:
Publisher: Elsevier
Total Pages: 341
Release: 2006-12-18
Genre: Technology & Engineering
ISBN: 0080467997

Download Nanophotonics with Surface Plasmons Book in PDF, ePub and Kindle

Current developments in optical technologies are being directed toward nanoscale devices with subwavelength dimensions, in which photons are manipulated on the nanoscale. Although light is clearly the fastest means to send information to and from the nanoscale, there is a fundamental incompatibility between light at the microscale and devices and processes at the nanoscale. Nanostructured metals which support surface plasmon modes can concentrate electromagnetic (EM) fields to a small fraction of a wavelength while enhancing local field strengths by several orders of magnitude. For this reason, plasmonic nanostructures can serve as optical couplers across the nano–micro interface: metal–dielectric and metal–semiconductor nanostructures can act as optical nanoantennae and enhance light matter coupling in nanoscale devices. This book describes how one can fully integrate plasmonic nanostructures into dielectric, semiconductor, and molecular photonic devices, for guiding photons across the nano–micro interface and for detecting molecules with unsurpassed sensitivity. ·Nanophotonics and Nanoplasmonics·Metamaterials and negative-index materials·Plasmon-enhanced sensing and spectroscopy·Imaging and sensing on the nanoscale·Metal Optics


Light-Matter Interaction

Light-Matter Interaction
Author: John Weiner
Publisher: Oxford University Press
Total Pages: 276
Release: 2013
Genre: Medical
ISBN: 0198567650

Download Light-Matter Interaction Book in PDF, ePub and Kindle

This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrödinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations. The structure of the book is designed around five principal chapters, but many of the chapters have extensive "complements" that either treat important digressions from the main body or penetrate deeper into some fundamental issue. Furthermore, at the end of the book are several appendices to provide readers with a convenient reference for frequently-occurring special functions and explanations of the analytical tools, such as vector calculus and phasors, needed to express important results in electromagnetics and waveguide theory.


Light-Matter Interactions Towards the Nanoscale

Light-Matter Interactions Towards the Nanoscale
Author: Maura Cesaria
Publisher: Springer Nature
Total Pages: 348
Release: 2022-05-14
Genre: Science
ISBN: 9402421386

Download Light-Matter Interactions Towards the Nanoscale Book in PDF, ePub and Kindle

The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research. For example, this volume includes a chapter on the sensing of biological molecules with optical resonators (microspheres) combined with plasmonic systems, where the response this system are described in a fundamental and elegant manner using coupled mode theory. Symmetry plays a major role in the book. One chapter on time reversal symmetry in electromagnetic theory describes how to control the properties of light (e.g. scattering and directionality of the flow of light) in materials with certain topological invariants. Another chapter where symmetry is prominent reformulates, using a gentle and pedagogical approach, Maxwell’s Equations into a new set of fields that reveal a “handedness” symmetry in electromagnetic theory, which can be applied to photonic systems in, for example, the sensing of chiral molecules and understanding the conditions for zero reflection. Also, for students and researchers starting in the field of nanoplasmonics, the book includes a tutorial on the finite element time domain simulation of nanoplasmonic systems. Other topics include photonic systems for quantum computing, nanoplasmonics, and optical properties of nano and bulk materials. The authors take a pedagogical approach to their topic, making the book an excellent reference for graduate students and scientists starting in the fields of photonics or plasmonics.


Design, Modeling and Simulation of Nanoscale Optoelectronic Devices

Design, Modeling and Simulation of Nanoscale Optoelectronic Devices
Author: Debin Li
Publisher:
Total Pages: 147
Release: 2012
Genre: Nanotechnology
ISBN:

Download Design, Modeling and Simulation of Nanoscale Optoelectronic Devices Book in PDF, ePub and Kindle

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.510-4 & lambda;03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.


Nanoantennas and Plasmonics

Nanoantennas and Plasmonics
Author: Douglas H. Werner
Publisher: SciTech Publishing
Total Pages: 471
Release: 2020-09-17
Genre: Science
ISBN: 1785618377

Download Nanoantennas and Plasmonics Book in PDF, ePub and Kindle

This book presents cutting-edge research advances in the rapidly growing areas of nanoantennas and plasmonics as well as their related enabling technologies and applications. It provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments, to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book also covers highly-directive nanoantennas, all-dielectric and tuneable/reconfigurable devices, metasurface optical components, and other related topics.