Optical Characterization Of Semiconductor Layers And Surfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Characterization Of Semiconductor Layers And Surfaces PDF full book. Access full book title Optical Characterization Of Semiconductor Layers And Surfaces.

Optical Characterization of Epitaxial Semiconductor Layers

Optical Characterization of Epitaxial Semiconductor Layers
Author: Günther Bauer
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642796788

Download Optical Characterization of Epitaxial Semiconductor Layers Book in PDF, ePub and Kindle

The characterization of epitaxial layers and their surfaces has benefitted a lot from the enormous progress of optical analysis techniques during the last decade. In particular, the dramatic improvement of the structural quality of semiconductor epilayers and heterostructures results to a great deal from the level of sophistication achieved with such analysis techniques. First of all, optical techniques are nondestructive and their sensitivity has been improved to such an extent that nowadays the epilayer analysis can be performed on layers with thicknesses on the atomic scale. Furthermore, the spatial and temporal resolution have been pushed to such limits that real time observation of surface processes during epitaxial growth is possible with techniques like reflectance difference spectroscopy. Of course, optical spectroscopies complement techniques based on the inter action of electrons with matter, but whereas the latter usually require high or ultrahigh vacuum conditions, the former ones can be applied in different environments as well. This advantage could turn out extremely important for a rather technological point of view, i.e. for the surveillance of modern semiconductor processes. Despite the large potential of techniques based on the interaction of electromagnetic waves with surfaces and epilayers, optical techniques are apparently moving only slowly into this area of technology. One reason for this might be that some prejudices still exist regarding their sensitivity.


Semiconductor Material and Device Characterization

Semiconductor Material and Device Characterization
Author: Dieter K. Schroder
Publisher: John Wiley & Sons
Total Pages: 800
Release: 2015-06-29
Genre: Technology & Engineering
ISBN: 0471739065

Download Semiconductor Material and Device Characterization Book in PDF, ePub and Kindle

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.


Optical Characterization of Semiconductors

Optical Characterization of Semiconductors
Author: Sidney Perkowitz
Publisher: Elsevier
Total Pages: 229
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0080984274

Download Optical Characterization of Semiconductors Book in PDF, ePub and Kindle

This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial scientists with specific problems in semiconducting materials; for academic scientists who wish to apply their spectroscopic methods to characterization problems; and for students in solid state physics, materials science and engineering, and semiconductor electronics and photonics, this book provides a unique overview, bringing together these valuable techniques in a coherent wayfor the first time. Discusses and compares infrared, Raman, and photoluminescence methods Enables readers to choose the best method for a given problem Illustrates applications to help non-experts and industrial users, with answers to selected common problems Presents fundamentals with examples from the semiconductor literature without excessive abstract discussion Features equipment lists and discussion of techniques to help establish characterization laboratories


Acoustic, Thermal Wave and Optical Characterization of Materials

Acoustic, Thermal Wave and Optical Characterization of Materials
Author: G.M. Crean
Publisher: Elsevier
Total Pages: 413
Release: 2014-08-04
Genre: Technology & Engineering
ISBN: 044459664X

Download Acoustic, Thermal Wave and Optical Characterization of Materials Book in PDF, ePub and Kindle

This volume focuses on a variety of novel non-destructive techniques for the characterization of materials, processes and devices. Emphasis is placed on probe-specimen interactions, in-situ diagnosis, instrumentation developments and future trends. This was the first time a symposium on this topic had been held, making the response particularly gratifying. The high quality of the contributions are a clear indication that non-destructive materials characterization is becoming a dynamic research area in Europe at the present time.A selection of contents: The role of acoustic properties in designs of acoustic and optical fibers (C.K. Jen). Observation of stable crack growth in Al2O3 ceramics using a scanning acoustic microscope (A. Quinten, W. Arnold). Mechanical characterization by acoustic techniques of SIC chemical vapour deposited thin films (J.M. Saurel et al.). Efficient generation of acoustic pressure waves by short laser pulses (S. Fassbender et al.). Use of scanning electron acoustic microscopy for the analysis of III-V compound devices (J.F. Bresse). Waves and vibrations in periodic piezoelectric composite materials (B.A. Auld). Precision ultrasonic velocity measurements for the study of the low temperature acoustic properties in defective materials (A. Vanelstraete, C. Laermans). Thermally induced concentration wave imaging (P. Korpiun et al.). Interferometric measurement of thermal expansion (V. Kurzmann et al.). Quantitative analyses of power loss mechanisms in semiconductor devices by thermal wave calorimetry (B. Büchner et al.). Thermal wave probing of the optical electronic and thermal properties of semiconductors (D. Fournier, A. Boccara). Thermal wave measurements in ion-implanted silicon (G. Queirola et al.). Optical-thermal non-destructive examination of surface coatings (R.E. Imhof et al.). Bonding analysis of layered materials by photothermal radiometry (M. Heuret et al.). Thermal non-linearities of semiconductor-doped glasses in the near-IR region (M. Bertolotti et al.). Theory of picosecond transient reflectance measurement of thermal and eisatic properties of thin metal films (Z. Bozóki et al.). The theory and application of contactless microwave lifetime measurement (T. Otaredian et al.). Ballistic phonon signal for imaging crystal properties (R.P. Huebener et al.). Determination of the elastic constants of a polymeric Langmuir-Blodgett film by Briliouin spectroscopy (F. Nizzoli et al.). Quantum interference effects in the optical second-harmonic response tensor of a metal surface (O. Keller). Study of bulk and surface phonons and plasmons in GaAs/A1As superlattices by far-IR and Raman spectroscopy (T. Dumslow et al.). Far-IR spectroscopy of bulk and surface phonon-polaritons on epitaxial layers of CdTe deposited by plasma MOCVD on GaAs substrates (T. Dumelow et al.). In-situ characterization by reflectance difference spectroscopy of III-V materials and heterojunctions grown by low pressure metal organic chemical vapour deposition (O. Acher et al.). Optical evidence of precipitates in arsenic-implanted silicon (A. Borghesi et al.). Polarized IR reflectivity of CdGeAs2 (L. Artús et al.). Raman and IR spectroscopies: a useful combination to study semiconductor interfaces (D.R.T. Zahn et al.). Silicon implantation of GaAs at low and medium doses: Raman assessment of the dopant activation (S. Zakang et al.). Ellipsometric characterization of thin films and superlattices (J. Bremer et al.). Ellipsometric characterization of multilayer transistor structures (J.A. Woollam et al.). Quality of molecular-beam-epitaxy-grown GaAs on Si(100) studied by ellipsometry (U. Rossow et al.). An ellipsometric and RBS study of TiSi2 formation (J.M.M. de Nijs, A. van Silfhout). A new microscope for semiconductor luminescence studies (P.S. Aplin, J.C. Day). Structural analysis of optical fibre preforms fabricated by the sol-gel process (A.M. Elas et al.). Author index.


Semiconductor Optics 1

Semiconductor Optics 1
Author: Heinz Kalt
Publisher: Springer Nature
Total Pages: 559
Release: 2019-09-20
Genre: Science
ISBN: 3030241521

Download Semiconductor Optics 1 Book in PDF, ePub and Kindle

This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.


Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures
Author: Giovanni Agostini
Publisher: Elsevier
Total Pages: 501
Release: 2011-08-11
Genre: Science
ISBN: 0080558151

Download Characterization of Semiconductor Heterostructures and Nanostructures Book in PDF, ePub and Kindle

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors