Optical Cavities For Optical Atomic Clocks Atom Interferometry And Gravitational Wave Detection PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optical Cavities For Optical Atomic Clocks Atom Interferometry And Gravitational Wave Detection PDF full book. Access full book title Optical Cavities For Optical Atomic Clocks Atom Interferometry And Gravitational Wave Detection.

Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection

Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection
Author: Miguel Dovale Álvarez
Publisher: Springer
Total Pages: 245
Release: 2019-08-10
Genre: Science
ISBN: 303020863X

Download Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection Book in PDF, ePub and Kindle

Devised at the beginning of the 20th century by french physicists Charles Fabry and Alfred Perot, the Fabry-Perot optical cavity is perhaps the most deceptively simple setup in optics, and today a key resource in many areas of science and technology. This thesis delves deeply into the applications of optical cavities in a variety of contexts: from LIGO’s 4-km-long interferometer arms that are allowing us to observe the universe in a new way by measuring gravitational waves, to the atomic clocks used to realise time with unprecedented accuracy which will soon lead to a redefinition of the second, and the matterwave interferometers that are enabling us to test and measure gravity in a new scale. The work presented accounts for the elegance and versatility of this setup, which today underpins much of the progress in the frontier of atomic and gravitational experimental physics.


Applications of Long Storage Time Optical Cavities

Applications of Long Storage Time Optical Cavities
Author: Tomoki Isogai
Publisher:
Total Pages: 152
Release: 2016
Genre:
ISBN:

Download Applications of Long Storage Time Optical Cavities Book in PDF, ePub and Kindle

Optical precision measurements have become one of the most important tools in physics to test the fundamental laws and to probe the universe around us. Often such experiments require high finesse cavities, and optical loss in these cavities is a critical parameter. In particular, for those cavities that deal with quantum systems, minimizing the cavity loss is crucial because any loss can easily degrade the fragile quantum states. One such example is a quantum noise filter cavity for gravitational wave (GW) detectors, where an optical cavity is necessary for producing frequency-dependent squeezed states of light to improve the sensitivity over their broad audioband frequency [1]. To test the feasibility of quantum noise filter cavities for GW detectors, we characterized the optical loss of state-of-the-art mirrors using a 2 m long high-finesse cavity. Using multiple loss measurement techniques, we studied loss dependence on laser beam sizes and positions. Within the 1 to 3 mm beam spot size we measured, we found that the mirror loss is almost constant at around 5 ppm, and that the loss depends more on the beam position on the mirror than on the beam size 121. While intra-cavity optical loss is one of the key parameters informing the design of quantum noise filter cavities, we also need to account for other quantum noise degradation mechanisms such as the phase noise, losses outside of the cavity, and mode-matching. We developed an analytical model of frequency-dependent squeezing with a quantum noise filter cavity to explore the practical degradation mechanisms in detail 131. Finally, by coupling a squeezed light source to the 2 m long high-finesse cavity, we demonstrated frequency-dependent squeezed states where 6 dB of squeezing in the squeezed quadrature was rotated by 90 degrees in the audio frequency band 141. The techniques used are directly applicable to squeezed light sources for GW detectors, and the measurements validated the model. The loss measurement results, the analytical model, and this demonstration, are now the basis for the design of a realistic quantum noise filter cavity for use in GW detectors in the near future to improve their sensitivity.


Handbook of Laser Technology and Applications

Handbook of Laser Technology and Applications
Author: Chunlei Guo
Publisher: CRC Press
Total Pages: 495
Release: 2021-06-23
Genre: Technology & Engineering
ISBN: 100029692X

Download Handbook of Laser Technology and Applications Book in PDF, ePub and Kindle

This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This forth volume covers laser applications in the medical, metrology and communications fields. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.


Laser Physics at the Limits

Laser Physics at the Limits
Author: Hartmut Figger
Publisher: Springer Science & Business Media
Total Pages: 525
Release: 2013-06-29
Genre: Science
ISBN: 3662048973

Download Laser Physics at the Limits Book in PDF, ePub and Kindle

Published on the occasion of Theodor Hänsch's 60th Birthday emphasis is placed on precision related to results in a variety of fields, such as atomic clocks, frequency standards, and the measurement of physical constants in atomic physics. Furthermore, illustrations and engineering applications of the fundamentals of quantum mechanics are widely covered. It has contributions by Nobel prize winners Norman F. Ramsey, Steven Chu, and Carl E. Wieman.


Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

Download Manipulating Quantum Systems Book in PDF, ePub and Kindle

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Exploring the Quantum

Exploring the Quantum
Author: Serge Haroche
Publisher: OUP Oxford
Total Pages: 616
Release: 2006-08-11
Genre: Science
ISBN: 0191523240

Download Exploring the Quantum Book in PDF, ePub and Kindle

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.


Optical Development for Second and Third Generation Gravitational Wave Detectors

Optical Development for Second and Third Generation Gravitational Wave Detectors
Author: Massimo Granata
Publisher:
Total Pages: 237
Release: 2011
Genre:
ISBN:

Download Optical Development for Second and Third Generation Gravitational Wave Detectors Book in PDF, ePub and Kindle

Gravitational waves are ripples in the fabric of space-time which might be detected with a Fabry-Perot Michelson interferometer. Several interferometers are presently operating: LIGO, Virgo, GEO. These instruments almost reached the design sensitivity and completed several observational runs. No detection is reported, but the data have been used to constraint the emission of astrophysical sources in the nearby Universe. Advanced Virgo, Advanced LIGO and LCGT are projects to increase the sensitivity of initial detectors by an order of magnitude, allowing the first direct detection. Their construction is presently ongoing. In the meanwhile, the project of a detector (Einstein Telescope) of higher sensitivity is under study. The sensitivity of future detectors will be limited by mirror thermal noise. In this thesis, two topics related to the reduction of this noise are presented. The first topic is the optical design of stable recycling cavities for Advanced Virgo. Their main features are presented, and the motivations for their implementation are discussed. A process for their optical design is established, and several layouts are drawn. A final configuration is retained, and its optical performances are discussed. The second topic concerns the use of higher-order Laguerre-Gauss laser modes. After a brief introduction about these modes, the results of a table-top experiment to test the generation of an LG33 mode with a diffractive plate and a Fabry-Perot cavity are presented. The mode is used in a Michelson interferometer, to demonstrate the ability of interferometric measurements with non-Gaussian beams. The implementation of these modes in future detectors is discussed.


Femtosecond Optical Frequency Comb: Principle, Operation and Applications

Femtosecond Optical Frequency Comb: Principle, Operation and Applications
Author: Jun Ye
Publisher: Springer Science & Business Media
Total Pages: 373
Release: 2006-06-15
Genre: Science
ISBN: 0387237917

Download Femtosecond Optical Frequency Comb: Principle, Operation and Applications Book in PDF, ePub and Kindle

Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.


Cavity Optomechanics

Cavity Optomechanics
Author: Markus Aspelmeyer
Publisher: Springer
Total Pages: 357
Release: 2014-07-09
Genre: Science
ISBN: 9783642553134

Download Cavity Optomechanics Book in PDF, ePub and Kindle

During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.


Galileo Unbound

Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
Total Pages: 384
Release: 2018-07-12
Genre: Science
ISBN: 0192528505

Download Galileo Unbound Book in PDF, ePub and Kindle

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.