On The Physics Of Flow Separation Along A Low Pressure Turbine Blade Under Unsteady Flow Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download On The Physics Of Flow Separation Along A Low Pressure Turbine Blade Under Unsteady Flow Conditions PDF full book. Access full book title On The Physics Of Flow Separation Along A Low Pressure Turbine Blade Under Unsteady Flow Conditions.

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 36
Release: 2018-06-20
Genre:
ISBN: 9781721575466

Download On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions Book in PDF, ePub and Kindle

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding t


Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19-20, 2011, Melbourne, Australia

Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19-20, 2011, Melbourne, Australia
Author: Liangzhong Jiang
Publisher: Springer Science & Business Media
Total Pages: 821
Release: 2011-11-24
Genre: Technology & Engineering
ISBN: 3642251943

Download Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19-20, 2011, Melbourne, Australia Book in PDF, ePub and Kindle

The volume includes a set of selected papers extended and revised from the International Conference on Informatics, Cybernetics, and Computer Engineering. A computer network, often simply referred to as a network, is a collection of computers and devices interconnected by communications channels that facilitate communications and allows sharing of resources and information among interconnected devices. Put more simply, a computer network is a collection of two or more computers linked together for the purposes of sharing information, resources, among other things. Computer networking or Data Communications (Datacom) is the engineering discipline concerned with computer networks. Computer networking is sometimes considered a sub-discipline of electrical engineering, telecommunications, computer science, information technology and/or computer engineering since it relies heavily upon the theoretical and practical application of these scientific and engineering disciplines. Networks may be classified according to a wide variety of characteristics such as medium used to transport the data, communications protocol used, scale, topology, organizational scope, etc. Electronics engineering, also referred to as electronic engineering, is an engineering discipline where non-linear and active electrical components such as electron tubes, and semiconductor devices, especially transistors, diodes and integrated circuits, are utilized to design electronic circuits, devices and systems, typically also including passive electrical components and based on printed circuit boards. The term denotes a broad engineering field that covers important subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. Electronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others. ICCE 2011 Volume 3 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of Computer Engineering and Electronic Engineering to disseminate their latest research results and exchange views on the future research directions of these fields. 99 high-quality papers are included in the volume. Each paper has been peer-reviewed by at least 2 program committee members and selected by the volume editor. Special thanks to editors, staff of association and every participants of the conference. It’s you make the conference a success. We look forward to meeting you next year.


Turbomachinery Flow Physics and Dynamic Performance

Turbomachinery Flow Physics and Dynamic Performance
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
Total Pages: 738
Release: 2012-05-01
Genre: Technology & Engineering
ISBN: 3642246753

Download Turbomachinery Flow Physics and Dynamic Performance Book in PDF, ePub and Kindle

With this second revised and extended edition, the readers have a solid source of information for designing state-of-the art turbomachinery components and systems at hand. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principles of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes. While maintaining the unifying character of the book structure in this second revised and extended edition all chapters have undergone a rigorous update and enhancement. Accounting for the need of the turbomachinery community, three chapters have been added, that deal with computationally relevant aspects of turbomachinery design such as boundary layer transition, turbulence and boundary layer.


New Results in Numerical and Experimental Fluid Mechanics VII

New Results in Numerical and Experimental Fluid Mechanics VII
Author: Andreas Dillmann
Publisher: Springer Science & Business Media
Total Pages: 629
Release: 2010-10-05
Genre: Technology & Engineering
ISBN: 3642142435

Download New Results in Numerical and Experimental Fluid Mechanics VII Book in PDF, ePub and Kindle

th This volume contains the papers presented at the 16 DGLR/STAB-Symposium held at the Eurogress Aachen and organized by RWTH Aachen University, Germany, November, 3 - 4, 2008. STAB is the German Aerospace Aerodynamics Association, founded towards the end of the 1970's, whereas DGLR is the German Society for Aeronautics and Astronautics (Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal Oberth e.V.). The mission of STAB is to foster development and acceptance of the discipline “Aerodynamics” in Germany. One of its general guidelines is to concentrate resources and know-how in the involved institutions and to avoid duplication in research work as much as possible. Nowadays, this is more necessary than ever. The experience made in the past makes it easier now, to obtain new knowledge for solving today's and tomorrow's problems. STAB unites German scientists and engineers from universities, research-establishments and industry doing research and project work in numerical and experimental fluid mechanics and aerodynamics for aerospace and other applications. This has always been the basis of numerous common research activities sponsored by different funding agencies. Since 1986 the symposium has taken place at different locations in Germany every two years. In between STAB workshops regularly take place at the DLR in Göttingen.


Fluid Mechanics for Engineers

Fluid Mechanics for Engineers
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
Total Pages: 517
Release: 2010-03-27
Genre: Technology & Engineering
ISBN: 3642115942

Download Fluid Mechanics for Engineers Book in PDF, ePub and Kindle

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.


Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists

Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists
Author: Meinhard T. Schobeiri
Publisher: Springer Nature
Total Pages: 602
Release: 2022-01-17
Genre: Technology & Engineering
ISBN: 3030729257

Download Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists Book in PDF, ePub and Kindle

The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph.D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A&M University for the past three decades.


Design and Development of Aerospace Vehicles and Propulsion Systems

Design and Development of Aerospace Vehicles and Propulsion Systems
Author: S. Kishore Kumar
Publisher: Springer Nature
Total Pages: 529
Release: 2021-03-18
Genre: Technology & Engineering
ISBN: 9811596018

Download Design and Development of Aerospace Vehicles and Propulsion Systems Book in PDF, ePub and Kindle

This book presents selected papers presented in the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2018), which was jointly organized by Aeronautical Development Agency (the nodal agency for the design and development of combat aircraft in India), Gas-Turbine Research Establishment (responsible for design and development of gas turbine engines for military applications), and CSIR-National Aerospace Laboratories (involved in major aerospace programs in the country such as SARAS program, LCA, Space Launch Vehicles, Missiles and UAVs). It brings together experiences of aerodynamicists in India as well as abroad in Aerospace Vehicle Design, Gas Turbine Engines, Missiles and related areas. It is a useful volume for researchers, professionals and students interested in diversified areas of aerospace engineering.


Combined Effects of Reynolds Number, Turbulence Intensity and Periodic Unsteady Wake Flow Conditions on Boundary Layer Development and Heat Transfer of a Low Pressure Turbine Blade

Combined Effects of Reynolds Number, Turbulence Intensity and Periodic Unsteady Wake Flow Conditions on Boundary Layer Development and Heat Transfer of a Low Pressure Turbine Blade
Author: Burak Ozturk
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Combined Effects of Reynolds Number, Turbulence Intensity and Periodic Unsteady Wake Flow Conditions on Boundary Layer Development and Heat Transfer of a Low Pressure Turbine Blade Book in PDF, ePub and Kindle

Detailed experimental investigation has been conducted to provide a detailed insight into the heat transfer and aerodynamic behavior of a separation zone that is generated as a result of boundary layer development along the suction surface of a highly loaded low pressure turbine (LPT) blade. The research experimentally investigates the individual and combined effects of periodic unsteady wake flows and freestream turbulence intensity (Tu) on heat transfer and aerodynamic behavior of the separation zone. Heat transfer experiments were carried out at Reynolds number of 110,000, 150,000, and 250,00 based on the suction surface length and the cascade exit velocity. Aerodynamic experiments were performed at Re = 110,000 and 150,000. For the above Re-numbers, the experimental matrix includes Tus of 1.9%, 3.0%, 8.0%,13.0% and three different unsteady wake frequencies with the steady inlet flow as the reference configuration. Detailed heat transfer and boundary layer measurements are performed with particular attention paid to the heat transfer and aerodynamic behavior of the separation zone at different Tus at steady and periodic unsteady flow conditions. The objectives of the research are (a) to quantify the effect of Tu on the aero-thermal behavior of the separation bubble at steady inlet flow condition, (b) to investigate the combined effects of Tu and the unsteady wake flow on the aero-thermal behavior of the separation bubble, and (c) to provide a complete set of heat transfer and aerodynamic data for numerical simulation that incorporates Navier-Stokes and energy equations. The analysis of the experimental data reveals details of boundary layer separation dynamics which is essential for understanding the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number and Tu. To provide a complete picture of the transition process and separation dynamics, extensive intermittency analysis was conducted. Ensemble averaged maximum and minimum intermittency functions were determined leading to the relative intermittency function. In addition, the detailed intermittency analysis reveals that the relative intermittency factor follows a Gaussian distribution confirming the universal character of the relative intermittency function.