On Performance Optimization And System Design Of Flash Memory Based Solid State Drives In The Storage Hierarchy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download On Performance Optimization And System Design Of Flash Memory Based Solid State Drives In The Storage Hierarchy PDF full book. Access full book title On Performance Optimization And System Design Of Flash Memory Based Solid State Drives In The Storage Hierarchy.

On Performance Optimization and System Design of Flash Memory Based Solid State Drives in the Storage Hierarchy

On Performance Optimization and System Design of Flash Memory Based Solid State Drives in the Storage Hierarchy
Author: Feng Chen
Publisher:
Total Pages: 128
Release: 2010
Genre:
ISBN:

Download On Performance Optimization and System Design of Flash Memory Based Solid State Drives in the Storage Hierarchy Book in PDF, ePub and Kindle

Abstract: As an emerging storage technology, Flash Memory based Solid State Drive (SSD) has shown a high potential to fundamentally change the existing Hard Disk Drive (HDD) based storage systems. Unlike conventional magnetic disks, SSD is built on semiconductor chips and has no mechanical components (e.g. rotating disk platters). This architectural difference brings many attractive technical features, such as high random data access performance and low power consumption. Most importantly, these unique features could potentially address the long-existing technical limitations of conventional magnetic disks. Due to this reason, SSD has been called a 'pivotal technology' that may completely revolutionize current computer storage systems.


Design Challenges on Enterprise-scale Storage Systems Employing Hard Drives and Nand Flash Based Solid-state Drives

Design Challenges on Enterprise-scale Storage Systems Employing Hard Drives and Nand Flash Based Solid-state Drives
Author: Youngjae Kim
Publisher:
Total Pages: 133
Release: 2009
Genre:
ISBN:

Download Design Challenges on Enterprise-scale Storage Systems Employing Hard Drives and Nand Flash Based Solid-state Drives Book in PDF, ePub and Kindle

Flash memory overcomes some key shortcomings of hard disk drives (HDDs), including faster access to non-sequential data and lower power consumption. Economic forces, driven by the desire to introduce flash into the enterprise market without changing existing software based, have resulted in the emergence of solid state drives (SSDs), flash packaged in HDD from factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of SSDs make their integration into HDD-based systems non-trivial. Flash memory suffers from limits on its reliability, in an order of magnitude more expensive than the disk, and can be sometimes even slower than the HDD (due to excessive GC induced by high intensity of random writes). Given the complementary properties of HDDs and SDDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the storage hierarchy. In my dissertation, I designed and evaluated such a hybrid system called HybridStore to provide (a) improved capacity planning techniques to administrators with the overall goal of operating within cost-budgets and (b) improved performance/lifetime guarantees during episodes of deviations from expected workloads through several novel mechanisms such as fragmentation busting and write regulation. As an illustrative example of HybridStore's efficacy, a combination of 1 SSD and 6 low-speed, cheaper and higher capacity HDDs is recommended the most cost-effective storage configuration in HybridStore for a predominantly random-write dominant I/O trace from an OLTP application running at a large financial institution. Also, HybridStore employing HDD with small SSD is able to reduce the average response time for Financial trace by about 71% as compared to a HDD-based system. In addition to HybridStore project, I developed a novel design technique of the Flash Translation Layer (FTL) in the SSD. It provides improved performance, reduced garbage collection overhead, and better overloaded behavior compared to state-of- the art FTL schemes. For example, the Financial trace shows a 78% improvement in average response time (due to a 3-fold reduction in operations of the garbage collector), compared to a state-of-the-art FTL scheme. Finally, I also developed and validated flash simulation framework call FlashSim. While a number of well-regarded simulation environments exist for HDDs, the same is not yet true for SSDs. This is due to SSDs having been in the storage market for relatively less time as well as the lack of information (hardware configuration and software methods) about state-of-the-art SSDs that is publicly available. FlashSim aimed at filling this void in performance evaluation of emerging storage systems that employ SSDs.


Flash Memories

Flash Memories
Author: Detlev Richter
Publisher: Springer Science & Business Media
Total Pages: 287
Release: 2013-09-12
Genre: Technology & Engineering
ISBN: 9400760825

Download Flash Memories Book in PDF, ePub and Kindle

The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined. Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based product development process. The Performance Indicator methodology is applied to demonstrate the importance of hidden memory parameters for a successful product and system development roadmap. Flash Memories offers an opportunity to enhance your understanding of product development key topics such as: · Reliability optimization of flash memories is all about threshold voltage margin understanding and definition; · Product performance parameter are analyzed in-depth in all aspects in relation to the threshold voltage operation window; · Technical characteristics are translated into quantitative performance indicators; · Performance indicators are applied to identify and quantify product and technology innovation within adjacent areas to fulfill the application requirements with an overall cost optimized solution; · Cost, density, performance and durability values are combined into a common factor – performance indicator - which fulfills the application requirements


Flash Memory Integration

Flash Memory Integration
Author: Jalil Boukhobza
Publisher: Elsevier
Total Pages: 268
Release: 2017-03-10
Genre: Technology & Engineering
ISBN: 008101158X

Download Flash Memory Integration Book in PDF, ePub and Kindle

4 zettabytes (4 billion terabytes) of data generated in 2013, 44 zettabytes predicted for 2020 and 185 zettabytes for 2025. These figures are staggering and perfectly illustrate this new era of data deluge. Data has become a major economic and social challenge. The speed of processing of these data is the weakest link in a computer system: the storage system. It is therefore crucial to optimize this operation. During the last decade, storage systems have experienced a major revolution: the advent of flash memory. Flash Memory Integration: Performance and Energy Issues contributes to a better understanding of these revolutions. The authors offer us an insight into the integration of flash memory in computer systems, their behavior in performance and in power consumption compared to traditional storage systems. The book also presents, in their entirety, various methods for measuring the performance and energy consumption of storage systems for embedded as well as desktop/server computer systems. We are invited on a journey to the memories of the future. Ideal for computer scientists, featuring low level details to concentrate on system issues Tackles flash memory aspects while spanning domains such as embedded systems and HPC Contains an exhaustive set of experimental results conducted in the Lab-STICC laboratory Provides details on methodologies to perform performance and energy measurements on flash storage systems


Inside Solid State Drives (SSDs)

Inside Solid State Drives (SSDs)
Author: Rino Micheloni
Publisher: Springer
Total Pages: 495
Release: 2018-07-11
Genre: Science
ISBN: 9811305994

Download Inside Solid State Drives (SSDs) Book in PDF, ePub and Kindle

The revised second edition of this respected text provides a state-of-the-art overview of the main topics relating to solid state drives (SSDs), covering NAND flash memories, memory controllers (including booth hardware and software), I/O interfaces (PCIe/SAS/SATA), reliability, error correction codes (BCH and LDPC), encryption, flash signal processing and hybrid storage. Updated throughout to include all recent work in the field, significant changes for the new edition include: A new chapter on flash memory errors and data recovery procedures in SSDs for reliability and lifetime improvement Updated coverage of SSD Architecture and PCI Express Interfaces moving from PCIe Gen3 to PCIe Gen4 and including a section on NVMe over fabric (NVMf) An additional section on 3D flash memories An update on standard reliability procedures for SSDs Expanded coverage of BCH for SSDs, with a specific section on detection A new section on non-binary Low-Density Parity-Check (LDPC) codes, the most recent advancement in the field A description of randomization in the protection of SSD data against attacks, particularly relevant to 3D architectures The SSD market is booming, with many industries placing a huge effort in this space, spending billions of dollars in R&D and product development. Moreover, flash manufacturers are now moving to 3D architectures, thus enabling an even higher level of storage capacity. This book takes the reader through the fundamentals and brings them up to speed with the most recent developments in the field, and is suitable for advanced students, researchers and engineers alike.


Improving Performance of Solid State Drives in Enterprise Environment

Improving Performance of Solid State Drives in Enterprise Environment
Author: Jian Hu
Publisher:
Total Pages: 140
Release: 2012
Genre: Flash memories (Computers)
ISBN: 9781267770226

Download Improving Performance of Solid State Drives in Enterprise Environment Book in PDF, ePub and Kindle

Flash memory, in the form of Solid State Drive (SSD), is being increasingly employed in mobile and enterprise-level storage systems due to its superior features such as high energy efficiency, high random read performance and small form factor. However, SSD suffers from the erase-before-write and endurance problems, which limit the direct deployment of SSD in enterprise environment. Existing studies either develop SSD-friendly on-board buffer management algorithms, or design sophisticated Flash Translation Layers (FTL) to ease the erase-before-write problem. This dissertation addresses the two issues and consists of two parts. The first part focuses on the white-box approaches that optimize the internal design of SSD. We design a write buffer management algorithm on top of the log-block FTL, which not only optimizes the write buffer effect by exploiting both the recency and frequency of blocks in the write buffer, but also minimizes the destaging overhead by maximizing the number of valid pages of the destaged block. We further identify that the low garbage collection efficiency problem has a significantly negative impact to the performance of the page-mapped SSD. We design a GC-Aware RAM management algorithm that improves the GC efficiency even if the workloads do not have updating requests by dynamically evaluating the benefits of different destaging policies and adaptively adopting the best one. Moreover, this algorithm minimizes the address translation overhead by exploiting the interplay between the buffer component and the FTL component. The second part focuses on the black-box approaches that optimize the SSD performance externally. As an increasing number of applications deploy SSD in enterprise environment, understanding the performance characteristics of SSD in enterprise environment is becoming critically important. We identify several performance anomalies of SSDs and their performance and endurance impacts on SSD employed in enterprise environment by evaluating several commercial SSDs. Our study provides insights and suggestions to both system developers and SSD vendors. Further, based on the performance anomalies identified, we design an IO scheduler that takes advantage of the SSD features and evaluate its performance on SSD. The scheduler is shown to improve performance in terms of bandwidth and average response time.


Solid-State-Drives (SSDs) Modeling

Solid-State-Drives (SSDs) Modeling
Author: Rino Micheloni
Publisher: Springer
Total Pages: 177
Release: 2017-03-28
Genre: Technology & Engineering
ISBN: 331951735X

Download Solid-State-Drives (SSDs) Modeling Book in PDF, ePub and Kindle

This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, from LDPC Soft Information to power, from Flash aging to FTL. SSD simulators are also addressed in a broader context in this book, i.e. the analysis of what happens when SSDs are connected to the OS (Operating System) and to the end-user application (for example, a database search). The authors walk the reader through the full simulation flow of a real system-level by combining SSD Explorer with the QEMU virtual platform. The reader will be impressed by the level of know-how and the combination of models that such simulations are asking for.


Performance and Reliability Study and Exploration of NAND Flash-based Solid State Drives

Performance and Reliability Study and Exploration of NAND Flash-based Solid State Drives
Author: Guanying Wu
Publisher:
Total Pages: 106
Release: 2013
Genre: Information retrieval
ISBN:

Download Performance and Reliability Study and Exploration of NAND Flash-based Solid State Drives Book in PDF, ePub and Kindle

The research that stems from my doctoral dissertation focuses on addressing essential challenges in developing techniques that utilize solid-state memory technologies (with emphasis on NAND flash memory) from device, circuit, architecture, and system perspectives in order to exploit their true potential for improving I/O performance in high-performance computing systems. These challenges include not only the performance quirks arising from the physical nature of NAND flash memory, e.g., the inability to modify data in-place, read/write performance asymmetry, and slow and constrained erase functionality, but also the reliability drawbacks that limits solid state drives (SSDs) from widely deployed. To address these challenges, I have proposed, analyzed, and evaluated the I/O scheduling schemes, strategies for storage space virtualization, and data protection methods, to boost the performance and reliability of SSDs.


Inside NAND Flash Memories

Inside NAND Flash Memories
Author: Rino Micheloni
Publisher: Springer Science & Business Media
Total Pages: 582
Release: 2010-07-27
Genre: Technology & Engineering
ISBN: 9048194318

Download Inside NAND Flash Memories Book in PDF, ePub and Kindle

Digital photography, MP3, digital video, etc. make extensive use of NAND-based Flash cards as storage media. To realize how much NAND Flash memories pervade every aspect of our life, just imagine how our recent habits would change if the NAND memories suddenly disappeared. To take a picture it would be necessary to find a film (as well as a traditional camera...), disks or even magnetic tapes would be used to record a video or to listen a song, and a cellular phone would return to be a simple mean of communication rather than a multimedia console. The development of NAND Flash memories will not be set down on the mere evolution of personal entertainment systems since a new killer application can trigger a further success: the replacement of Hard Disk Drives (HDDs) with Solid State Drives (SSDs). SSD is made up by a microcontroller and several NANDs. As NAND is the technology driver for IC circuits, Flash designers and technologists have to deal with a lot of challenges. Therefore, SSD (system) developers must understand Flash technology in order to exploit its benefits and countermeasure its weaknesses. Inside NAND Flash Memories is a comprehensive guide of the NAND world: from circuits design (analog and digital) to Flash reliability (including radiation effects), from testing issues to high-performance (DDR) interface, from error correction codes to NAND applications like Flash cards and SSDs.


Boosting Performance and Endurance of Flash-based Storage Systems

Boosting Performance and Endurance of Flash-based Storage Systems
Author:
Publisher:
Total Pages: 189
Release: 2015
Genre: Electronic books
ISBN:

Download Boosting Performance and Endurance of Flash-based Storage Systems Book in PDF, ePub and Kindle

NAND flash memory (hereafter, flash memory) has been intensively employed in a wide spectrum of computing systems from mobile devices like smartphones to personal computers to enterprise servers due to its high performance, low power consumption, and shock resistance. However, the further deployment of flash memory is impeded because it also possesses several inherent disadvantages such as limited programming/erase cycles and asymmetrical I/O performance. Besides, the existing frameworks for storage systems are originally designed for block devices (e.g., hard disk drives), which have totally different characteristics from flash memory. In order to utilize flash memory in current storage systems, an extra software layer between a traditional storage system interface and flash memory is needed to mimic the behavior of a block device. Unfortunately, using a flash-based storage system as a traditional HDD noticeably neutralizes the benefits of flash memory.In this dissertation, we holistically examine current flash-based storage systems in different computing platforms ranging from embedded systems to enterprise servers. Firstly, we empirically characterize a representative collection of flash memory devices and then model their raw I/O performance and reliability. Our results demonstrate that flash memory performance and reliability are correlated to programmed data patterns. Further, we propose multiple approaches to improving the performance and reliability of flash-based storage systems at device level. Secondly, we study flash translation layer (FTL) in flash-based solid-state drives (SSDs) for desktops. A plane-centric FTL and a workload-aware MLC/SLC (multi-level cell/single-level cell) partitioning scheme are implemented to boost the performance of a single SSD. Thirdly, the employment of SSD arrays in enterprise servers is investigated. We propose a load-balancing scheme at disk array level to prolong the lifetime of SSD arrays for server applications like OLTP (online transaction processing). Finally, an MTD (memory technology device) array based storage framework will be developed to meet the performance and reliability requirements demanded by emerging and future data-intensive and mission-critical mobile applications.