Observation Prediction And Simulation Of Phase Transitions In Complex Fluids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Observation Prediction And Simulation Of Phase Transitions In Complex Fluids PDF full book. Access full book title Observation Prediction And Simulation Of Phase Transitions In Complex Fluids.

Observation, Prediction and Simulation of Phase Transitions in Complex Fluids

Observation, Prediction and Simulation of Phase Transitions in Complex Fluids
Author: Marc Baus
Publisher: Springer Science & Business Media
Total Pages: 669
Release: 2012-12-06
Genre: Science
ISBN: 9401100659

Download Observation, Prediction and Simulation of Phase Transitions in Complex Fluids Book in PDF, ePub and Kindle

Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.


Phase Transitions in Complex Fluids

Phase Transitions in Complex Fluids
Author: Pierre Tol‚dano
Publisher: World Scientific
Total Pages: 476
Release: 1998
Genre: Science
ISBN: 9789810232603

Download Phase Transitions in Complex Fluids Book in PDF, ePub and Kindle

This important and timely book deals with the theoretical and experimental investigation of the phase transitions which occur in complex fluid systems, namely lyotropic systems, microemulsions, colloids, gels, polymers, biological membranes, Langmuir monolayers, and ferrofluids. It contains 20-odd review papers from the major contributors to this rapidly growing field of research, summarizing the main results obtained in the description and understanding of the phase transitions taking place between the isotopic, nematic, cholesteric, lamellar, hexagonal, and cubic mesophases of complex fluids.


Advances in the Computer Simulatons of Liquid Crystals

Advances in the Computer Simulatons of Liquid Crystals
Author: Paolo Pasini
Publisher: Springer Science & Business Media
Total Pages: 435
Release: 2013-11-11
Genre: Science
ISBN: 9401142254

Download Advances in the Computer Simulatons of Liquid Crystals Book in PDF, ePub and Kindle

Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.


Rheology and Fourier-Transform Rheology on Water-Based Systems

Rheology and Fourier-Transform Rheology on Water-Based Systems
Author: Christopher Klein
Publisher: Logos Verlag Berlin GmbH
Total Pages: 249
Release: 2008
Genre: Science
ISBN: 3832519882

Download Rheology and Fourier-Transform Rheology on Water-Based Systems Book in PDF, ePub and Kindle

The influence of shear fields on water-based systems was investigated within this thesis. The non-linear rheological behaviour of spherical and rod-like particles was examined with Fourier-Transform rheology under LAOS conditions. As a model system for spherical particles two different kinds of polystyrene disper- sions, with a solid content higher than 0.3 each, were synthesised within this work. Due to the differences in polydispersity and Debye-length, differences were also found in the rheology. In the FT-rheology both kinds of dispersions showed a similar rise in the intensities of the magnitudes of the odd higher harmonics, which were predicted by a model. The, in some cases additionally appearing second harmonics, were not predicted. A novel method to analyse the time domain signal was developed, that splits the time domain signal up in four characteristic functions. Those characteristic functions correspond to rheological phenomena. In some cases the intensities of the Fourier components can interfere negatively. FD-virus particles were used as a rod-like model system, which already shows a highly non-linear behaviour at concentrations below 1. % wt. Predictions for the dependence of the higher harmonics from the strain amplitude described the non-linear behaviour well at large, but no so good at small strain amplitudes. Ad- ditionally the trends of the rheological behaviour could be described by a theory for rod-like particles. An existing rheo-optical set-up was enhanced by reducing the background birefringence by a factor of 20 and by increasing the time resolution by a factor of 24. Additionally a combination of FT-rheology and rheo-optics was achieved. The influence of a constant shear field on the crystallisation process of zinc oxide in the presence of a polymer was examined. The crystallites showed a reduction in length by a factor of 2. The directed addition of polymers in combi- nation with a defined shear field can be an easy way for a defined change of the form of crystallites.


Microgel Suspensions

Microgel Suspensions
Author: Alberto Fernandez-Nieves
Publisher: John Wiley & Sons
Total Pages: 475
Release: 2011-01-11
Genre: Science
ISBN: 3527633014

Download Microgel Suspensions Book in PDF, ePub and Kindle

Providing a vital link between chemistry and physics on the nanoscale, this book offers concise coverage of the entire topic in five major sections, beginning with synthesis of microgel particles and continuing with their physical properties. The phase behavior and dynamics of resulting microgel suspensions feature in the third section, followed by their mechanical properties. It concludes with detailed accounts of numerous industrial, commercial and medical applications. Edited by David Weitz, Professor at Harvard and one of the world's pre-eminent experts in the field.


Understanding Molecular Simulation

Understanding Molecular Simulation
Author: Daan Frenkel
Publisher: Elsevier
Total Pages: 664
Release: 2001-10-19
Genre: Science
ISBN: 9780080519982

Download Understanding Molecular Simulation Book in PDF, ePub and Kindle

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: · Transition path sampling and diffusive barrier crossing to simulaterare events · Dissipative particle dynamic as a course-grained simulation technique · Novel schemes to compute the long-ranged forces · Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations · Multiple-time step algorithms as an alternative for constraints · Defects in solids · The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules · Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Morphology of Condensed Matter

Morphology of Condensed Matter
Author: Klaus R. Mecke
Publisher: Springer
Total Pages: 452
Release: 2008-01-11
Genre: Science
ISBN: 3540457828

Download Morphology of Condensed Matter Book in PDF, ePub and Kindle

The morphology of spatially stuctured materials is a rapidly growing field of research at the interface of statistical physics, applied mathematics and materials science. A wide spectrum of applications encompasses the flow through porous and composite materials as well as microemulsions and foams. Written as a set of lectures and tutorial reviews leading up to the forefront of research, this book will be both a compendium for the experienced researcher as well as a high level introductory text for postgraduate students and nonspecialist researchers working in related areas.


Molecular Simulation of Fluids

Molecular Simulation of Fluids
Author: Richard J. Sadus
Publisher: Elsevier
Total Pages: 617
Release: 2023-09-16
Genre: Science
ISBN: 0323910556

Download Molecular Simulation of Fluids Book in PDF, ePub and Kindle

Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms Covers the application of both MPI and GPU programming to molecular simulation Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning


Relaxation Phenomena

Relaxation Phenomena
Author: Wolfgang Haase
Publisher: Springer Science & Business Media
Total Pages: 732
Release: 2013-03-09
Genre: Science
ISBN: 3662097478

Download Relaxation Phenomena Book in PDF, ePub and Kindle

The authors describe the electric, magnetic and other relaxational processes in a wide spectrum of materials: liquid crystals, molecular magnets, polymers, high-Tc superconductors and glasses. The book summarizes the phenomenological fundamentals and the experimental methods used. A detailed description of molecular and collective dynamics in the broad range of liquid crystals is presented. Magnetic systems, high-Tc superconductors, polymers and glasses are an important subject of matter. It is shown that the researchers working on relaxation processes in different fields of materials sciences are dealing with the same physical fundamentals, but are sometimes using slightly different terms. The book is addressed to scientists, engineers, graduate and undergraduate students, experimentalists and theorists in physics, chemistry, materials sciences and electronic engineering. Many internationally well known experts contribute to it.


New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals

New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals
Author: Ronald Hancock
Publisher: Academic Press
Total Pages: 511
Release: 2013-12-27
Genre: Science
ISBN: 0128002522

Download New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals Book in PDF, ePub and Kindle

International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology--both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Impact factor for 2012: 4.973. Ideas from the fields of biophysics, physical chemistry, of polymer and colloid, and soft matter science have helped clarify the structure and functions of the cell nucleus. The development of powerful methods for modeling conformations and interactions of macromolecules has also contributed. The book aims to encourage cell and molecular biologists to become more familiar with and understand these new concepts and methods, and the crucial contributions they are making to our perception of the nucleus. This is the first volume to present a comprehensive review of New Models of the Cell Nucleus