Numerical Simulations Of Incompressible Mhd Turbulence PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Simulations Of Incompressible Mhd Turbulence PDF full book. Access full book title Numerical Simulations Of Incompressible Mhd Turbulence.

Turbulence in Magnetohydrodynamics

Turbulence in Magnetohydrodynamics
Author: Andrey Beresnyak
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 434
Release: 2019-07-08
Genre: Science
ISBN: 3110392240

Download Turbulence in Magnetohydrodynamics Book in PDF, ePub and Kindle

Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. In most cases these phenomena involve turbulences, and thus are very challenging to understand and calculate. A sound knowledge is needed to tackle these problems. This work gives the basic information on turbulence in nature, comtaining the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.


Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence

Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
Author: John V. Shebalin
Publisher: BiblioGov
Total Pages: 34
Release: 2013-08
Genre:
ISBN: 9781289284251

Download Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence Book in PDF, ePub and Kindle

Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = k less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.


Magnetohydrodynamic Turbulence

Magnetohydrodynamic Turbulence
Author: Dieter Biskamp
Publisher: Cambridge University Press
Total Pages: 313
Release: 2003-07-31
Genre: Science
ISBN: 1139441671

Download Magnetohydrodynamic Turbulence Book in PDF, ePub and Kindle

This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressible (in particular, supersonic) turbulence. Because of the similarities in the theoretical approach, these chapters start with a brief account of the corresponding methods developed in hydrodynamic turbulence. The final part of the book is devoted to astrophysical applications: turbulence in the solar wind, in accretion disks, and in the interstellar medium. This book is suitable for graduate students and researchers working in turbulence theory, plasma physics and astrophysics.


Numerical Simulation of Magnetohydrodynamic Turbulence in Confined Domains

Numerical Simulation of Magnetohydrodynamic Turbulence in Confined Domains
Author: Salah Neffaa
Publisher:
Total Pages: 139
Release: 2010
Genre:
ISBN:

Download Numerical Simulation of Magnetohydrodynamic Turbulence in Confined Domains Book in PDF, ePub and Kindle

In this thesis we developed a Fourier pseudo-spectral code coupled with the volume penalization for the simulation of turbulent MHD flows with non-periodic boundary conditions. This method was validated with classical and academic test-cases. Then we studied the influence of the confinement with walls in a 2D configuration for decaying MHD and we found four decaying regimes which depend on the initial conditions. We also discussed the phenomenon of spontaneous rotation, or spin-up, in 2D non-axisymmetric geometries, originally discovered in hydrodynamic flows. We showed the influence of the Reynolds number and the magnetic pressure on this phenomenon. Finally, simulations of MHD flows in wall bounded three-dimensional domains were addressed. The first results concerning the simulation of decaying MHD turbulence in a cylinder imposing Dirichlet boundary conditions for both the velocity and the magnetic field showed the validity of the code and suggest good prospects for developing more physically justified boundary conditions for the magnetic field.


Introduction to Modern Magnetohydrodynamics

Introduction to Modern Magnetohydrodynamics
Author: Sébastien Galtier
Publisher: Cambridge University Press
Total Pages: 285
Release: 2016-10-06
Genre: Science
ISBN: 1316692477

Download Introduction to Modern Magnetohydrodynamics Book in PDF, ePub and Kindle

Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.


A New Class of Finite Element Variational Multiscale Turbulence Models for Incompressible Magnetohydrodynamics

A New Class of Finite Element Variational Multiscale Turbulence Models for Incompressible Magnetohydrodynamics
Author:
Publisher:
Total Pages: 21
Release: 2015
Genre:
ISBN:

Download A New Class of Finite Element Variational Multiscale Turbulence Models for Incompressible Magnetohydrodynamics Book in PDF, ePub and Kindle

New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. Thus a numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.


Turbulence and Magnetic Fields in Astrophysics

Turbulence and Magnetic Fields in Astrophysics
Author: Edith Falgarone
Publisher: Springer
Total Pages: 466
Release: 2008-01-11
Genre: Science
ISBN: 354036238X

Download Turbulence and Magnetic Fields in Astrophysics Book in PDF, ePub and Kindle

This book contains review articles of most of the topics addressed at the conf- ence on Simulations of Magnetohydrodynamic turbulence in astrophysics: recent achievements and perspectives which took place from July 2 to 6, 2001 at the Institut Henri Poincar ́e in Paris. We made the choice to publish these lectures in a tutorial form so that they can be read by a broad audience. As a result, this book does not give an exhaustive view of all the subjects addressed during the conference. The main objective of this workshop which gathered about 90 scientists from di?erent ?elds, was to present and confront recent results on the topic of t- bulence in magnetized astrophysical environments. A second objective was to discuss the latest generation of numerical codes, such as those using adaptive mesh re?nement (AMR) techniques. During a plenary discussion at the end of the workshop discussions were held on several topics, often at the heart of vivid controversies. Topics included the timescale for the dissipation of magneto-hydrodynamical (MHD) turbulence, the role of boundary conditions, the characteristics of imbalanced turbulence, the validity of the polytropic approach to Alfv ́en waves support within interst- lar clouds, the source of turbulence inside clouds devoid of stellar activity, the timescale for star formation, the Alfv ́en Mach number of interstellar gas motions, the formation process for helical ?elds in the interstellar medium. The impact of small upon large scales was also discussed.


Numerical Methods in Turbulence Simulation

Numerical Methods in Turbulence Simulation
Author: Robert Moser
Publisher: Elsevier
Total Pages: 568
Release: 2022-11-30
Genre: Science
ISBN: 032399833X

Download Numerical Methods in Turbulence Simulation Book in PDF, ePub and Kindle

Numerical Methods in Turbulence Simulation provides detailed specifications of the numerical methods needed to solve important problems in turbulence simulation. Numerical simulation of turbulent fluid flows is challenging because of the range of space and time scales that must be represented. This book provides explanations of the numerical error and stability characteristics of numerical techniques, along with treatments of the additional numerical challenges that arise in large eddy simulations. Chapters are written as tutorials by experts in the field, covering specific both contexts and applications. Three classes of turbulent flow are addressed, including incompressible, compressible and reactive, with a wide range of the best numerical practices covered. A thorough introduction to the numerical methods is provided for those without a background in turbulence, as is everything needed for a thorough understanding of the fundamental equations. The small scales that must be resolved are generally not localized around some distinct small-scale feature, but instead are distributed throughout a volume. These characteristics put particular strain on the numerical methods used to simulate turbulent flows. Includes a detailed review of the numerical approximation issues that impact the simulation of turbulence Provides a range of examples of large eddy simulation techniques Discusses the challenges posed by boundary conditions in turbulence simulation and provides approaches to addressing them