Numerical Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Mathematics PDF full book. Access full book title Numerical Mathematics.

Numerical Mathematics

Numerical Mathematics
Author: Alfio Quarteroni
Publisher: Springer
Total Pages: 669
Release: 2017-01-26
Genre: Mathematics
ISBN: 0387227504

Download Numerical Mathematics Book in PDF, ePub and Kindle

The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.


Concise Numerical Mathematics

Concise Numerical Mathematics
Author: Robert Plato
Publisher: American Mathematical Soc.
Total Pages: 476
Release: 2003
Genre: Mathematics
ISBN: 9780821834145

Download Concise Numerical Mathematics Book in PDF, ePub and Kindle

"The book is suitable as a text for a first course in numerical methods for mathematics students or students in neighboring fields, such as engineering, physics, and computer science. In general, the author assumes only a knowledge of calculus and linear algebra."--BOOK JACKET.


Lectures on Numerical Mathematics

Lectures on Numerical Mathematics
Author: H. Rutishauser
Publisher: Springer Science & Business Media
Total Pages: 559
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461234689

Download Lectures on Numerical Mathematics Book in PDF, ePub and Kindle

The present book is an edition of the manuscripts to the courses "Numerical Methods I" and "Numerical Mathematics I and II" which Professor H. Rutishauser held at the E.T.H. in Zurich. The first-named course was newly conceived in the spring semester of 1970, and intended for beginners, while the two others were given repeatedly as elective courses in the sixties. For an understanding of most chapters the funda mentals of linear algebra and calculus suffice. In some places a little complex variable theory is used in addition. However, the reader can get by without any knowledge of functional analysis. The first seven chapters discuss the direct solution of systems of linear equations, the solution of nonlinear systems, least squares prob lems, interpolation by polynomials, numerical quadrature, and approxima tion by Chebyshev series and by Remez' algorithm. The remaining chapters include the treatment of ordinary and partial differential equa tions, the iterative solution of linear equations, and a discussion of eigen value problems. In addition, there is an appendix dealing with the qd algorithm and with an axiomatic treatment of computer arithmetic.


Numerical Mathematics

Numerical Mathematics
Author: Matheus Grasselli
Publisher: Jones & Bartlett Learning
Total Pages: 696
Release: 2008
Genre: Computers
ISBN: 9780763737672

Download Numerical Mathematics Book in PDF, ePub and Kindle

Numerical Mathematics presents the innovative approach of using numerical methods as a practical laboratory for all undergraduate mathematics courses in science and engineering streams. The authors bridge the gap between numerical methods and undergraduate mathematics and emphasize the graphical visualization of mathematical properties, numerical verification of formal statements, and illustrations of the mathematical ideas. Students using Numerical Mathematics as a supplementary reference for basic mathematical courses will be encouraged to deveolp their mathematical intuition with an effective component of technology, while students using it as the primary text for numerical courses will have a broader, reinforced understanding of the subject.


Numerical Methods

Numerical Methods
Author: Anne Greenbaum
Publisher: Princeton University Press
Total Pages: 471
Release: 2012-04-01
Genre: Mathematics
ISBN: 1400842670

Download Numerical Methods Book in PDF, ePub and Kindle

A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online


An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis
Author: James F. Epperson
Publisher: John Wiley & Sons
Total Pages: 579
Release: 2013-06-06
Genre: Mathematics
ISBN: 1118626230

Download An Introduction to Numerical Methods and Analysis Book in PDF, ePub and Kindle

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.


Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems
Author: Herbert B. Keller
Publisher: Courier Dover Publications
Total Pages: 417
Release: 2018-11-14
Genre: Mathematics
ISBN: 0486828344

Download Numerical Methods for Two-Point Boundary-Value Problems Book in PDF, ePub and Kindle

Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.


Special Matrices and Their Applications in Numerical Mathematics

Special Matrices and Their Applications in Numerical Mathematics
Author: Miroslav Fiedler
Publisher: Courier Corporation
Total Pages: 384
Release: 2013-12-01
Genre: Mathematics
ISBN: 0486783480

Download Special Matrices and Their Applications in Numerical Mathematics Book in PDF, ePub and Kindle

This revised and corrected second edition of a classic on special matrices provides researchers in numerical linear algebra and students of general computational mathematics with an essential reference. 1986 edition.


Numerical Methods for Structured Markov Chains

Numerical Methods for Structured Markov Chains
Author: Dario A. Bini
Publisher: OUP Oxford
Total Pages: 340
Release: 2005-02-03
Genre: Mathematics
ISBN: 019152364X

Download Numerical Methods for Structured Markov Chains Book in PDF, ePub and Kindle

Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible to engineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature. The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description and analysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the book ends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.


Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers
Author: Alvaro Meseguer
Publisher: John Wiley & Sons
Total Pages: 400
Release: 2020-06-16
Genre: Mathematics
ISBN: 1119425670

Download Fundamentals of Numerical Mathematics for Physicists and Engineers Book in PDF, ePub and Kindle

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.