Nonparametric And Semiparametric Censored Survival Analysis Of Correlated Times To Event And Their Sequelae PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonparametric And Semiparametric Censored Survival Analysis Of Correlated Times To Event And Their Sequelae PDF full book. Access full book title Nonparametric And Semiparametric Censored Survival Analysis Of Correlated Times To Event And Their Sequelae.

Interval-Censored Time-to-Event Data

Interval-Censored Time-to-Event Data
Author: Ding-Geng (Din) Chen
Publisher: CRC Press
Total Pages: 435
Release: 2012-07-19
Genre: Mathematics
ISBN: 1466504250

Download Interval-Censored Time-to-Event Data Book in PDF, ePub and Kindle

Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interval-censored data. The next part presents interval-censored methods for current status data, Bayesian semiparametric regression analysis of interval-censored data with monotone splines, Bayesian inferential models for interval-censored data, an estimator for identifying causal effect of treatment, and consistent variance estimation for interval-censored data. In the final part, the contributors use Monte Carlo simulation to assess biases in progression-free survival analysis as well as correct bias in interval-censored time-to-event applications. They also present adaptive decision making methods to optimize the rapid treatment of stroke, explore practical issues in using weighted logrank tests, and describe how to use two R packages. A practical guide for biomedical researchers, clinicians, biostatisticians, and graduate students in biostatistics, this volume covers the latest developments in the analysis and modeling of interval-censored time-to-event data. It shows how up-to-date statistical methods are used in biopharmaceutical and public health applications.


The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data
Author: Jianguo Sun
Publisher: Springer
Total Pages: 304
Release: 2007-05-26
Genre: Mathematics
ISBN: 0387371192

Download The Statistical Analysis of Interval-censored Failure Time Data Book in PDF, ePub and Kindle

This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.


Survival Analysis Using S

Survival Analysis Using S
Author: Mara Tableman
Publisher: CRC Press
Total Pages: 277
Release: 2003-07-28
Genre: Mathematics
ISBN: 0203501411

Download Survival Analysis Using S Book in PDF, ePub and Kindle

Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.


Methods for Two-sample Comparisons from Censored Time-to-event Data

Methods for Two-sample Comparisons from Censored Time-to-event Data
Author: Nubyra Ahmed
Publisher:
Total Pages: 60
Release: 2015
Genre:
ISBN:

Download Methods for Two-sample Comparisons from Censored Time-to-event Data Book in PDF, ePub and Kindle

In the analysis of censored survival data, it is frequently of interest to determine the efficacy of a treatment or new method over a control or existing method. For this purpose, one may report estimates of the two survival functions or, more specifically, their difference, accompanied by simultaneous confidence bands (SCBs). Alternatively, or in addition, one may conduct hypothesis testing for the difference of the two survival functions. The first project exploits two bootstrap methods to develop new Wald-type SCBs for the difference of survival functions. The censored data bootstrap is employed to obtain nonparametric SCBs for the difference of two survival curves. Furthermore, a recently developed two-stage bootstrap is exploited to obtain semiparametric SCBs for the difference. The two-stage bootstrap combines the classical bootstrap with a model-based regeneration of censoring indicators. Simulation studies are presented to show that the new SCBs are superior to a currently existing one, in the sense of producing empirical coverage closer to the nominal level. The model-based approach produces tighter and, hence, more informative SCBs. Specifically, for censoring rates between 10% and 40%, the semiparametric SCBs provide a relative reduction in enclosed area amounting to between 2% and 7% over their nonparametric counterparts, with the increase in reduction being directly proportional to the censoring rate. In particular, the reduction is expected to be even higher for high censoring rates. The methods are illustrated using real data sets from cancer and other biomedical studies. The second project develops semiparametric SCBs for the difference using the method of empirical likelihood. Simulation studies are presented to show that the semiparametric approach is superior to the nonparametric counterpart, with the new SCBs producing empirical coverage closer to the nominal level. Further comparisons reveal that the semiparametric confidence bands are tighter and, hence, more informative. For censoring rates between 10% and 40%, the semiparametric confidence bands provide a relative reduction in enclosed area amounting to between 2% and 7% over their nonparametric bands, with increased reduction attained for higher censoring rates. The methods are illustrated using an University of Massachusetts AIDS data set. Finally, the third project develops two test procedures for the null hypothesis of no difference between the survival functions. The test statistics are based on the group-specific nonparametric or semiparametric survival function estimators. The censored data and two-stage bootstrap procedures are again deployed to obtain critical values for the testing. Numerical simulations show that the new test procedures outperform an existing one, in terms of producing the correct empirical significance level. Furthermore, power studies reinforce the superiority of the proposed method. A real example illustration is given to demonstrate the proposed method.


Handbook of Survival Analysis

Handbook of Survival Analysis
Author: John P. Klein
Publisher: CRC Press
Total Pages: 635
Release: 2016-04-19
Genre: Mathematics
ISBN: 146655567X

Download Handbook of Survival Analysis Book in PDF, ePub and Kindle

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians


Survival Analysis with Interval-Censored Data

Survival Analysis with Interval-Censored Data
Author: Kris Bogaerts
Publisher: CRC Press
Total Pages: 617
Release: 2017-11-20
Genre: Mathematics
ISBN: 1420077481

Download Survival Analysis with Interval-Censored Data Book in PDF, ePub and Kindle

Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society and editor of Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the Statistical Modelling Society, past-president of the International Society for Clinical Biostatistics, and fellow of ISI and ASA.


Survival Analysis in Medicine and Genetics

Survival Analysis in Medicine and Genetics
Author: Jialiang Li
Publisher: CRC Press
Total Pages: 385
Release: 2013-06-04
Genre: Mathematics
ISBN: 143989311X

Download Survival Analysis in Medicine and Genetics Book in PDF, ePub and Kindle

Using real data sets throughout, Survival Analysis in Medicine and Genetics introduces the latest methods for analyzing high-dimensional survival data. It provides thorough coverage of recent statistical developments in the medical and genetics fields. The text mainly addresses special concerns of the survival model. After covering the fundamentals, it discusses interval censoring, nonparametric and semiparametric hazard regression, multivariate survival data analysis, the sub-distribution method for competing risks data, the cure rate model, and Bayesian inference methods. The authors then focus on time-dependent diagnostic medicine and high-dimensional genetic data analysis. Many of the methods are illustrated with clinical examples. Emphasizing the applications of survival analysis techniques in genetics, this book presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. It reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.


Nonparametric and Parametric Survival Analysis of Censored Data with Possible Violation of Method Assumptions

Nonparametric and Parametric Survival Analysis of Censored Data with Possible Violation of Method Assumptions
Author: Guolin Zhao
Publisher:
Total Pages: 57
Release: 2009
Genre: Mathematical statistics
ISBN:

Download Nonparametric and Parametric Survival Analysis of Censored Data with Possible Violation of Method Assumptions Book in PDF, ePub and Kindle

"Estimating survival functions has interested statisticians for numerous years. A survival function gives information on the probability of a time-to-event of interest. Research in the area of survival analysis has increased greatly over the last several decades because of its large usage in areas related to biostatistics and the pharmaceutical industry. Among the methods which estimate the survival function, several are widely used and available in popular statistical software programs. One purpose of this research is to compare the efficiency between competing estimators of the survival function. Results are given for simulations which use nonparametric and parametric estimation methods on censored data. The simulated data sets have right-, left-, or interval-censored time points. Comparisons are done on various types of data to see which survival function estimation methods are more suitable. We consider scenarios where distributional assumptions or censoring type assumptions are violated. Another goal of this research is to examine the effects of these incorrect assumptions."--Abstract from author supplied metadata.