Nonlinear Finite Element Analysis Of Precast Reinforced Concrete Beam Column Joint PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Finite Element Analysis Of Precast Reinforced Concrete Beam Column Joint PDF full book. Access full book title Nonlinear Finite Element Analysis Of Precast Reinforced Concrete Beam Column Joint.

Nonlinear Finite Element Analysis of Reinforced Concrete Exterior Beam-column Joints with Nonseismic Detailing

Nonlinear Finite Element Analysis of Reinforced Concrete Exterior Beam-column Joints with Nonseismic Detailing
Author: James B. Deaton
Publisher:
Total Pages:
Release: 2013
Genre: Concrete construction
ISBN:

Download Nonlinear Finite Element Analysis of Reinforced Concrete Exterior Beam-column Joints with Nonseismic Detailing Book in PDF, ePub and Kindle

This research investigated the behavior of nonseismically detailed reinforced concrete exterior beam-column joints subjected to bidirectional lateral cyclic loading using nonlinear finite element analysis (NLFEA). Beam-column joints constitute a critical component in the load path of reinforced concrete buildings due to their fundamental role in integrating the overall structural system. Earthquake reconnaissance reports reveal that failure of joints has contributed to partial or complete collapse of reinforced concrete buildings designed without consideration for large lateral loads, resulting in significant economic impact and loss of life. Such infrastructure exists throughout seismically active regions worldwide, and the large-scale risk associated with such deficiencies is not fully known. Computational strategies provide a useful complement to the existing experimental literature on joint behavior and are needed to more fully characterize the failure processes in seismically deficient beam-column joints subjected to realistic failure conditions. Prior to this study, vulnerable reinforced concrete corner beam-column joints including the slab had not been analyzed using nonlinear finite element analysis and compared with experimental results. The first part of this research focused on identification and validation of a constitutive modeling strategy capable of simulating the behaviors known to dominate failure of beam-column joints under cyclic lateral load using NLFEA. This prototype model was formulated by combining a rotating smeared crack concrete constitutive model with a reinforcing bar plasticity model and nonlinear bond-slip formulation. This model was systematically validated against experimental data, and parametric studies were conducted to determine the sensitivity of the response to various material properties. The prototype model was then used to simulate the cyclic response of four seismically deficient beam-column joints which had been previously evaluated experimentally. The simulated joints included: a one-way exterior joint, a two-way beam-column exterior corner joint, and a series of two-way beam-column-slab exterior corner joints with varying degrees of seismic vulnerability. The two-way corner joint specimens were evaluated under simultaneous cyclic bidirectional lateral and cyclic column axial loading. For each specimen, the ability of the prototype model to capture the strength, stiffness degradation, energy dissipation, joint shear strength, and progressive failure mechanisms (e.g. cracking) was demonstrated.


Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams

Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams
Author: Xiaoshan Lin
Publisher: Woodhead Publishing
Total Pages: 256
Release: 2019-10-18
Genre: Architecture
ISBN: 0128169001

Download Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams Book in PDF, ePub and Kindle

Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams Presents new composite beam elements developed by the authors Introduces numerical techniques for the development of effective finite element models using commercial software Discusses the critical issues encountered in structural analysis Maintains a clear focus on advanced numerical modeling


Finite Element Design of Concrete Structures

Finite Element Design of Concrete Structures
Author: Guenter Axel Rombach
Publisher: Thomas Telford
Total Pages: 302
Release: 2004
Genre: Architecture
ISBN: 9780727732743

Download Finite Element Design of Concrete Structures Book in PDF, ePub and Kindle

In Finite Element Design of Concrete Structures: practical problems and their solutions the author addresses this blind belief in computer results by offering a useful critique that important details are overlooked due to the flood of information from the output of computer calculations. Indeed, errors in the numerical model may lead in extreme cases to structural failures as the collapse of the so-called Sleipner platform has demonstrated.


3-D Finite Element Modeling of Reinforced Concrete Beam-column Connections

3-D Finite Element Modeling of Reinforced Concrete Beam-column Connections
Author: Harpreet Singh Hansra
Publisher:
Total Pages: 182
Release: 2012
Genre:
ISBN:

Download 3-D Finite Element Modeling of Reinforced Concrete Beam-column Connections Book in PDF, ePub and Kindle

This report, 3-D Finite Element Modeling of Reinforced Concrete Beam-Column Connections -- Development and Comparison to NCHRP 12-74, investigates the use of finite element modeling (FEM) to predict the structural response of the cast-in-place (CIP) reinforced concrete bent cap-column test specimen reported in NCHRP Report 681 -- Development of a Precast Bent Cap System for Seismic Regions. Analysis was performed using LS-DYNA as the finite element processor. The Karagozian & Case Damaged Concrete model, material MAT_072, was used as the constitutive model for all concrete elements and material MAT_003, a plastic kinematic model, was used as the constitutive model for the reinforcing steel. Strain-hardening effects of steel were neglected for this analysis. Boundary conditions on the FE model were identical to the vertical and horizontal restraints used on the CIP specimen during testing. The FE model only considered a monotonic push loading sequence, whereas the CIP specimen was subjected to reverse cyclic loading. To account for the difference in loading, the FE model results were compared to the hysteretic envelope from the CIP specimen. The lateral load-lateral displacement response of the FE model (Model 1) compared reasonably well to the actual and theoretically predicted response of the CIP specimen. For lateral displacements less than that corresponding to a displacement ductility of 4.1, the FE model showed a larger stiffness than the actual CIP response. The model stiffness degraded as a greater number of concrete elements in the column plastic hinging region accumulated damage. The degradation and lateral load-displacement response matched the predicted response within 5% for a displacement ductility larger than 2.0; however, the model degradation was not as severe as that observed for the CIP specimen. Concrete damage in the FE model correlated reasonably well with observed cracking and spalling of the CIP specimen. Significant damage was observed in the column of the FE model, near the joint, reflecting flexural cracking. Initial yielding of column longitudinal bars in the FE model occurred at a displacement ductility 26% larger than the CIP specimen. Based on contours of concrete damage and principal stress vectors, the primary shear crack formed diagonally through the joint of the FE model at a lateral load 6% higher than that of the CIP specimen. Joint rotation for the FE model was significantly less than that of the CIP specimen, approximately half of the specimen values. Conclusions include: 1) finite element modeling using appropriate constitutive models and element formulation can accurately capture the nonlinear behavior of reinforced concrete beam-column connections, including flexural cracking, joint shear cracking, steel reinforcement yielding and overall stress distribution; 2) element size for concrete and steel reinforcement significantly impacts the overall response and accuracy of results and therefore must be carefully selected for convergence; 3) the Karagozian & Case damaged concrete model, material MAT_072, can accurately capture the cracking of concrete using limited inputs (f 'c and aggregate size). Recommendations include: 1) additional analysis should be performed to appropriately incorporate a strain hardening model for the reinforcing steel; 2) strain distribution of the steel reinforcement in the joint (longitudinal reinforcement, joint hoops, and joint stirrups) should be further investigated as well as the hoop strain distribution in the column plastic hinge region; 3) a concrete constitutive model capable of reverse cyclic loading should be investigated; 4) a bar slip model for bond between the concrete and reinforcing steel should be investigated.