New Methodology For The Numerical Simulation Of Wall Bounded Turbulent Flows Phd PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download New Methodology For The Numerical Simulation Of Wall Bounded Turbulent Flows Phd PDF full book. Access full book title New Methodology For The Numerical Simulation Of Wall Bounded Turbulent Flows Phd.

DNS of Wall-Bounded Turbulent Flows

DNS of Wall-Bounded Turbulent Flows
Author: Tapan K. Sengupta
Publisher: Springer
Total Pages: 358
Release: 2019-02-09
Genre: Technology & Engineering
ISBN: 9789811343155

Download DNS of Wall-Bounded Turbulent Flows Book in PDF, ePub and Kindle

This book highlights by careful documentation of developments what led to tracking the growth of deterministic disturbances inside the shear layer from receptivity to fully developed turbulent flow stages. Associated theoretical and numerical developments are addressed from basic level so that an uninitiated reader can also follow the materials which lead to the solution of a long-standing problem. Solving Navier-Stokes equation by direct numerical simulation (DNS) from the first principle has been considered as one of the most challenging problems of understanding what causes transition to turbulence. Therefore, this book is a very useful addition to advanced CFD and advanced fluid mechanics courses.


Liutex and Its Applications in Turbulence Research

Liutex and Its Applications in Turbulence Research
Author: Chaoqun Liu
Publisher: Academic Press
Total Pages: 458
Release: 2020-10-29
Genre: Science
ISBN: 0128190248

Download Liutex and Its Applications in Turbulence Research Book in PDF, ePub and Kindle

Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. Provides an accurate mathematical definition of vortices Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence Explains the term “Rortex as a mathematically defined rigid rotation of fluids or vortex Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence


Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall-bounded Turbulent Flows

Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall-bounded Turbulent Flows
Author: Dustin John Bespalko
Publisher:
Total Pages: 370
Release: 2011
Genre:
ISBN:

Download Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall-bounded Turbulent Flows Book in PDF, ePub and Kindle

In this work, the lattice Boltzmann method (LBM) was validated for direct numerical simulation (DNS) of wall-bounded turbulent flows. The LBM is a discrete-particle-based method that numerically solves the Boltzmann equation as opposed to conventional DNS methods that are based on the Navier-Stokes (NS) equations. The advantages of the LBM are its simple implementation, its ability to handle complex geometries, and its scalability on modern high-performance computers. An LBM code was developed and used to simulate fully-developed turbulent channel flow. In order to validate the results, the turbulence statistics were compared to those calculated from a conventional NS-based finite difference (FD) simulation. In the present study, special care was taken to make sure the computational domains for LBM and FD simulations were the same. Similar validation studies in the literature have used LBM simulations with smaller computational domains in order to reduce the computational cost. However, reducing the size of the computational domain affects the turbulence statistics and confounds the results of the validation. The turbulence statistics calculated from the LBM and FD simulations were found to agree qualitatively; however, there were several significant deviations, particularly in the variance profiles. The largest discrepancy was in the variance of the pressure fluctuations, which differed by approximately 7%. Given that both the LBM and FD simulations resolved the full range of turbulent scales and no models were used, this error was deemed to be significant. The cause of the discrepancy in the pressure variance was found to be the compressibility of the LBM. The LBM allows the density to vary, while the FD method does not since it solves the incompressible form of the NS equations. The effect of the compressibility could be reduced by lowering the Mach number, but this would come at the cost of significantly increasing the computational cost. Therefore, the conclusion of this work is that, while the LBM is capable of producing accurate solutions for incompressible turbulent flows, it is significantly more expensive than conventional methods for simple wall-bounded turbulent flows.


Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications
Author: Tomás Chacón Rebollo
Publisher: Springer
Total Pages: 530
Release: 2014-06-17
Genre: Mathematics
ISBN: 1493904558

Download Mathematical and Numerical Foundations of Turbulence Models and Applications Book in PDF, ePub and Kindle

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.


Simulation and Modeling of Turbulent Flows

Simulation and Modeling of Turbulent Flows
Author: Thomas B. Gatski
Publisher: Oxford University Press
Total Pages: 329
Release: 1996-07-11
Genre: Science
ISBN: 0195355563

Download Simulation and Modeling of Turbulent Flows Book in PDF, ePub and Kindle

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


Modeling Complex Turbulent Flows

Modeling Complex Turbulent Flows
Author: Manuel D. Salas
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2012-12-06
Genre: Science
ISBN: 9401147248

Download Modeling Complex Turbulent Flows Book in PDF, ePub and Kindle

Turbulence modeling both addresses a fundamental problem in physics, 'the last great unsolved problem of classical physics,' and has far-reaching importance in the solution of difficult practical problems from aeronautical engineering to dynamic meteorology. However, the growth of supercom puter facilities has recently caused an apparent shift in the focus of tur bulence research from modeling to direct numerical simulation (DNS) and large eddy simulation (LES). This shift in emphasis comes at a time when claims are being made in the world around us that scientific analysis itself will shortly be transformed or replaced by a more powerful 'paradigm' based on massive computations and sophisticated visualization. Although this viewpoint has not lacked ar ticulate and influential advocates, these claims can at best only be judged premature. After all, as one computational researcher lamented, 'the com puter only does what I tell it to do, and not what I want it to do. ' In turbulence research, the initial speculation that computational meth ods would replace not only model-based computations but even experimen tal measurements, have not come close to fulfillment. It is becoming clear that computational methods and model development are equal partners in turbulence research: DNS and LES remain valuable tools for suggesting and validating models, while turbulence models continue to be the preferred tool for practical computations. We believed that a symposium which would reaffirm the practical and scientific importance of turbulence modeling was both necessary and timely.


Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows
Author: P. A. Durbin
Publisher: John Wiley & Sons
Total Pages: 347
Release: 2011-06-28
Genre: Science
ISBN: 1119957524

Download Statistical Theory and Modeling for Turbulent Flows Book in PDF, ePub and Kindle

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.