New Measurement Techniques And Their Applications In Single Molecule Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download New Measurement Techniques And Their Applications In Single Molecule Electronics PDF full book. Access full book title New Measurement Techniques And Their Applications In Single Molecule Electronics.

New Measurement Techniques and Their Applications in Single Molecule Electronics

New Measurement Techniques and Their Applications in Single Molecule Electronics
Author: Shaoyin Guo
Publisher:
Total Pages: 145
Release: 2012
Genre: Electron transport
ISBN:

Download New Measurement Techniques and Their Applications in Single Molecule Electronics Book in PDF, ePub and Kindle

Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates a nanosecond scale measurement of the gold atomic contact breakdown process. A combined setup of DC and AC circuits is employed, where the AC circuit reveals interesting observations in nanosecond scale not previously seen using conventional DC circuits. The breakdown time of gold atomic contacts is determined to be faster than 0.1 ns and subtle atomic events are observed within nanoseconds. Furthermore, a new method based on the scanning tunneling microscope break junction (STM-BJ) technique is developed to rapidly record thousands of I-V curves from repeatedly formed single molecule junctions. 2-dimensional I-V and conductance-voltage (G-V) histograms constructed using the acquired data allow for more meaningful statistical analysis to single molecule I-V characteristics. The bias voltage adds an additional dimension to the conventional single molecule conductance measurement. This method also allows one to perform transition voltage spectra (TVS) for individual junctions and to study the correlation between the conductance and the tunneling barrier height. The variation of measured conductance values is found to be primarily determined by the poorly defined contact geometry between the molecule and metal electrodes, rather than the tunnel barrier height. In addition, the rapid I-V technique is also found useful in studying thermoelectric effect in single molecule junctions. When applying a temperature gradient between the STM tip and substrate in air, the offset current at zero bias in the I-V characteristics is a measure of thermoelectric current. The rapid I-V technique allows for statistical analysis of such offset current at different temperature gradients and thus the Seebeck coefficient of single molecule junctions is measured. Combining with single molecule TVS, the Seebeck coefficient is also found to be a measure of tunnel barrier height.


Single-Molecule Electronics

Single-Molecule Electronics
Author: Manabu Kiguchi
Publisher: Springer
Total Pages: 239
Release: 2016-05-23
Genre: Science
ISBN: 9811007241

Download Single-Molecule Electronics Book in PDF, ePub and Kindle

This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.


Molecular Electronics

Molecular Electronics
Author: Juan Carlos Cuevas
Publisher: World Scientific
Total Pages: 724
Release: 2010
Genre: Science
ISBN: 9814282588

Download Molecular Electronics Book in PDF, ePub and Kindle

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.


Molecular Electronic Devices

Molecular Electronic Devices
Author: Forrest L. Carter
Publisher:
Total Pages: 386
Release: 1982
Genre:
ISBN: 9780824780586

Download Molecular Electronic Devices Book in PDF, ePub and Kindle


Single Molecule Spectroscopy

Single Molecule Spectroscopy
Author: R. Rigler
Publisher: Springer Science & Business Media
Total Pages: 375
Release: 2012-12-06
Genre: Science
ISBN: 3642565441

Download Single Molecule Spectroscopy Book in PDF, ePub and Kindle

The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.


Measurement and Visualization of Electron Transfer at the Single Molecule Level

Measurement and Visualization of Electron Transfer at the Single Molecule Level
Author: Yangjun Xing
Publisher:
Total Pages: 171
Release: 2009
Genre:
ISBN:

Download Measurement and Visualization of Electron Transfer at the Single Molecule Level Book in PDF, ePub and Kindle

Molecular electronics based on bottom-up electronic circuit design is a potential solution to meet the continuous need to miniaturize electronic devices. The development of highly conductive molecular wires, especially for long distance charge transfer, is a major milestone in the molecular electronics roadmap. A challenge presented by single molecule conductance is to define the relative influence of the molecular "core" and the molecular "interconnects" on the observed currents. Much focus has been placed on designing conductive, conjugated molecules. However, the electrode-molecule contacts can dominate the responses of metal-molecule-metal devices. We have experimentally and theoretically probed charge transfer through single phenyleneethynylene molecules terminated with thiol and carbodithioate linkers, using STM break-junction and non-equilibrium Green's function methods. The STM break-junction method utilizes repeatedly formed circuits where one or a few molecules are trapped between two electrodes, at least one of which has nanoscale dimensions. The statistical analysis of thousands of measurements yields the conductance of single molecules. Experimental data demonstrate that the carbodithioate linker not only augments electronic coupling to the metal electrode relative to thiol, but reduces the barrier to charge injection into the phenyleneethynylene bridge. The theoretical analysis shows that sulfur hybridization provides the genesis for the order-of-magnitude increased conductance in carbodithioate-terminated systems relative to those that feature the thiol linker. Collectively, these data emphasize the promising role for carbodithioate-based connectivity in molecular electronics applications involving metallic and semi-conducting electrodes. One of the strategies for building molecular wires that can transfer charge over long distance is to incorporate metal ions into the conductive molecular core. Peptide nucleic acid (PNA) is a great candidate for this purpose. Studying the conductivity of PNA can not only contribute to a better understanding of charge transfer through biomolecules, but can also help develop better molecular wires and other building blocks of molecular electronics. We study the charge transfer of PNA molecules using the STM break-junction technique and compare with traditional macroscopic voltammetric measurements. By measuring the resistance of different PNA molecules, we hope to develop a deep understanding of how charge transport though PNA is affected by factors such as the number and type of natural and artificial bases, embedded metal ions, pH, etc. Self-assembled monolayers (SAMs) of porphyrins are of great interest due to their diverse applications, including molecular devices, nano-templates, electrocatalysis, solar cells, and photosynthesis. We combined a molecular level study of the redox reactions using electrochemical scanning tunneling microscopy (EC-STM) with a macroscopic electrochemical technique, cyclic voltammetry (CV), to study two redox active porphyrin molecules, TPyP (5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine) and 5, 10, 15, 20-tetrakis (4-carboxylphenyl)-21H, 23H-porphine (TCPP). We showed that the adsorbed oxidized TPyP molecules slowly change to brighter contrast, consistent with the appearance of the reduced form of TPyP, under reduction condition (0.0VSCE). The time scale of the slow reduction is in the order of tens of minutes at 0.0VSCE, but accelerates at more negative potentials. We propose that protonation and deprotonation processes play an important role in the surface redox reaction due to geometric restriction of the molecules adsorbed on the surface. EC-STM and CV experiments were performed at various pH values to investigate the mechanism of this anomalously slow redox reaction. Our results show that the increased concentration of H+ hinders the reduction of porphyrins, a feature that has not been reported preciously. This provides insight into the details of the surface redox reaction.


An Assessment of the National Institute of Standards and Technology Measurement and Standards Laboratories

An Assessment of the National Institute of Standards and Technology Measurement and Standards Laboratories
Author: National Research Council
Publisher: National Academies Press
Total Pages: 364
Release: 2002-10-26
Genre: Technology & Engineering
ISBN: 0309085268

Download An Assessment of the National Institute of Standards and Technology Measurement and Standards Laboratories Book in PDF, ePub and Kindle

This assessment of the technical quality and relevance of the programs of the Measurement and Standards Laboratories of the National Institute of Standards and Technology is the work of the 165 members of the National Research Council's (NRC's) Board on Assessment of NIST Programs and its panels. These individuals were chosen by the NRC for their technical expertise, their practical experience in running research programs, and their knowledge of industry's needs in basic measurements and standards. This assessment addresses the following: The technical merit of the laboratory programs relative to the state of the art worldwide; The effectiveness with which the laboratory programs are carried out and the results disseminated to their customers; The relevance of the laboratory programs to the needs of their customers; and The ability of the laboratories' facilities, equipment, and human resources to enable the laboratories to fulfill their mission and meet their customers' needs.


An Assessment of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory

An Assessment of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory
Author: National Research Council
Publisher: National Academies Press
Total Pages: 38
Release: 2007-10-18
Genre: Technology & Engineering
ISBN: 0309111838

Download An Assessment of the National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory Book in PDF, ePub and Kindle

The report on the EEEL presents an assessment of the Lab's four divisions. The assessment is based on four criteria: alignment with national priorities, motivation of its programs, technical merit, and technical program quality. The report also provides a look at three additional concerns: staffing and funding, international issues, and the planning process.


Design and Control of Highly Conductive Single-Molecule Junctions

Design and Control of Highly Conductive Single-Molecule Junctions
Author: Satoshi Kaneko
Publisher: Springer
Total Pages: 92
Release: 2017-04-04
Genre: Science
ISBN: 9811044120

Download Design and Control of Highly Conductive Single-Molecule Junctions Book in PDF, ePub and Kindle

This thesis describes improvements to and control of the electrical conductance in single-molecule junctions (SMJs), which have potential applications in molecular electronics, with a focus on the bonding between the metal and molecule. In order to improve the electrical conductance, the π orbital of the molecule is directly bonded to the metal orbital, because anchoring groups, which were typically used in other studies to bind molecule with metal electrodes, became resistive spacers. Using this direct π-binding, the author has successfully demonstrated highly conductive SMJs involving benzene, endohedral metallofullerene Ce@C82, and nitrogen. Subsequently, the author investigated control of the electrical conductance of SMJs using pyrazine. The nitrogen atom in the π-conjugated system of pyrazine was expected to function as an anchoring point, and two bonding states were expected. One originates primarily from the π orbital, while the other originates primarily from an n state of the nitrogen. Measurements of conductance and dI/dV spectra coupled with theoretical calculations revealed that the pyrazine SMJ has bistable conductance states, in which the pyrazine axis is either tilted or parallel with respect to the junction axis. The bistable states were switched by changing the gap size between the metal electrodes using an external force. Notably, it is difficult to change the electrical properties of bulk-state materials using mechanical force. The findings reveal that the electron transport properties of a SMJ can be controlled by designing a proper metal–molecule interface, which has considerable potential for molecular electronics. Moreover, this thesis will serve as a guideline for every step of SMJ research: design, fabrication, evaluation, and control.


Nanogap Electrodes

Nanogap Electrodes
Author: Tao Li
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2021-07-14
Genre: Technology & Engineering
ISBN: 3527659587

Download Nanogap Electrodes Book in PDF, ePub and Kindle

Unique in its scope, this book comprehensively combines various synthesis strategies with applications for nanogap electrodes. Clearly divided into four parts, the monograph begins with an introduction to molecular electronics and electron transport in molecular junctions, before moving on to a whole section devoted to synthesis and characterization. The third part looks at applications with single molecules or self-assembled monolayers, and the whole is rounded off with a section on interesting phenomena observed using molecular-based devices.