Nanofibers Of Conjugated Polymers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nanofibers Of Conjugated Polymers PDF full book. Access full book title Nanofibers Of Conjugated Polymers.

Nanofibers of Conjugated Polymers

Nanofibers of Conjugated Polymers
Author: A. Sezai Sarac
Publisher: CRC Press
Total Pages: 211
Release: 2017-03-27
Genre: Science
ISBN: 131534128X

Download Nanofibers of Conjugated Polymers Book in PDF, ePub and Kindle

Conjugated polymer composites with high dielectric constants are being developed by the electronics industry in response to the need for power-grounded decoupling to secure the integrity of high-speed signals and to reduce electromagnetic interference. Electrically conducting polymers are materials that simultaneously possess the physical and chemical properties of organic polymers and the electronic characteristics of metals. Multifunctional micro- and nanostructures of conjugated polymers, such as of pyrrole, have received great attention in recent years because they can polymerize easily and have high conductivity and good thermal stability. They, however, have some disadvantages such as brittleness and hard processability, which can be overcome by developing their nanocomposites. Nanofiber materials with different dielectric properties can be made from conjugated polymer composites and used in the electronics industry, in sensors and batteries, for electrical stimulation to enhance nerve-regeneration process, and for constructing scaffolds for nerve tissue engineering. Electrospinning is a versatile technique that is used to produce ultrathin continuous fibers with high surface-to-volume and aspect ratios from a variety of materials, including polymers, composites, and ceramics. Conductive materials in fibrillar shape may be advantageous compared with films because of their inherent properties such as anisotropy, high surface area, and mechanical strength. They are of particular interest in electroactive composites as they can be efficiently distributed in an insulating polymer matrix to improve both electrical and mechanical properties. Combination of electrical properties with good mechanical performance is of particular interest in electroactive polymer technology. This book covers the general aspects of electrospinning and discusses the fundamental concepts that can be used to produce nanofibers with the help of mathematical models and equations. It also details the methods through which different polymeric structures can be included in conjugated polymers during electrospinning to form composites or blends of conjugated polymer nanofibers.


Polymer Nanofibers

Polymer Nanofibers
Author: Dario Pisignano
Publisher: Royal Society of Chemistry
Total Pages: 442
Release: 2013
Genre: Crafts & Hobbies
ISBN: 1849735743

Download Polymer Nanofibers Book in PDF, ePub and Kindle

Research into polymer nanofibers has increased significantly over the last decade, prompting the need for a comprehensive monograph examining the subject as knowledge of their properties and potential applications has increased. Postgraduate students and researchers new to the field will benefit from the "from materials to applications" approach to the book, which examines the physio-chemical properties in detail, demonstrating how they can be exploited for a diverse range of applications, including the production of light and wound dressings. Techniques for the fabrication, notably electrospinning, are discussed at length. This book provides a unique and accessible source of information, summarising the last decade of the field and presenting an entry point for those entering the field and an inspiration to established workers. The author is currently the national coordinator for several research projects examining the applications of polymer nanofibers, alongside active international collaborations.


Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications

Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications
Author: Srabanti Ghosh
Publisher: John Wiley & Sons
Total Pages: 38
Release: 2021-06-01
Genre: Technology & Engineering
ISBN: 3527345574

Download Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications Book in PDF, ePub and Kindle

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.


Structure and Properties of Conjugated Polymer Thin Films and Nanofibers

Structure and Properties of Conjugated Polymer Thin Films and Nanofibers
Author: Jinglin Liu
Publisher:
Total Pages: 130
Release: 2016
Genre: Conjugated polymers
ISBN: 9781369128574

Download Structure and Properties of Conjugated Polymer Thin Films and Nanofibers Book in PDF, ePub and Kindle

Conjugated polymers are electronically and ionically active organic materials. These polymers are widely used in biomedical interfaces, chemical sensors and organic photovoltaics for their reasonably high conductivity and relatively “soft” mechanical properties. However, despite the wide applications, the structure-property relationship of these materials remains poorly understood. Here we presented a study on the structural characterization and property analysis of conjugated polymer thin films and nanofibers. ☐ Electrochemical polymerization is a convenient method for fabricating polymer thin films. We reported a novel electrochemical deposition of highly crystalline bromine functionalized thiophene monomer, which is a precursor for solid-state polymerized poly(3,4-ethylene dioxythiophene) (PEDOT). We investigated the electrochemical process in detail by altering conditions and carefully monitoring the reaction. The morphology, structure and properties of both the EDOT-Br monomer and PEDOT polymer were characterized. ☐ Despite the wide application of electrochemical polymerization, a detailed, quantitative understanding of nucleation and growth mechanisms has remained elusive. We have studied the electrochemical deposition of PEDOT from an aqueous solution of EDOT monomer using an in-situ Transmission Electron Microscopy (TEM) liquid flow cell. It was found that PEDOT deposition began preferentially at the edge of the glassy carbon anodes at the beginning of the reaction. Fluctuating clusters of liquid-like oligomers were observed to form near the electrode surfaces. As the reaction continued both the nucleation of new domains as well as the growth of pre-existing PEDOT deposits were observed, leading to systematic increases in film thickness and roughness. ☐ Conjugated polymer nanofibers are of particular interest for their high surface-to-volume ratios, and have been considered for applications such as field-effect transistors, biomedical devices and sensors. Electrospinning is a well-developed method for the solution processing of polymers into nanometer to micrometer-sized fibers. We quantitatively studied the relationship between molecular orientation and fiber diameter within single electrospun fibers using low dose electron microscopy and diffraction techniques. It was confirmed that for electrospun fibers with decreasing fiber diameters, the molecular orientation increased. To facilitate the solution processing of the otherwise dilute and low viscosity conducting polymers, another relatively easy-to-process supporting polymer was introduced into the fabrication. Poly(3-hexylthiophene-2,5-diyl) (P3HT) + polycaprolactone (PCL) core-shell nanofibers were prepared via a coaxial electrospinning method. Morphological results from electron microscopy confirmed that P3HT conjugated polymer nanofibers were obtained after solvent removal of the PCL supporting polymer. Molecular orientation studies revealed that polymer chains were oriented parallel to fiber axes in the PCL polymer shell, while perpendicular to fiber axes in the P3HT core. The electrical and mechanical properties of the core-shell polymer nanofibers were investigated at the single fiber level using a specialized stage in the chamber of a Focused Ion Beam – Scanning Electron Microscope (FIB-SEM).


Conjugated Polymers

Conjugated Polymers
Author: Terje A. Skotheim
Publisher: CRC Press
Total Pages: 1030
Release: 2006-12-26
Genre: Technology & Engineering
ISBN: 1420043595

Download Conjugated Polymers Book in PDF, ePub and Kindle

Many significant fundamental concepts and practical applications have developed since the publication of the best-selling second edition of the Handbook of Conducting Polymers. Now divided into two books, the third edition continues to retain the excellent expertise of the editors and world-renowned contributors while providing superior coverage of


Nanofibers

Nanofibers
Author: Tong Lin
Publisher: BoD – Books on Demand
Total Pages: 472
Release: 2011-11-14
Genre: Science
ISBN: 9533074205

Download Nanofibers Book in PDF, ePub and Kindle

As an important one-dimensional nanomaterial, nanofibers have extremely high specific surface area because of their small diameters, and nanofiber membranes are highly porous with excellent pore interconnectivity. These unique characteristics plus the functionalities from the materials themselves impart nanofibers with a number of novel properties for advanced applications. This book is a compilation of contributions made by experts who specialize in nanofibers. It provides an up-to-date coverage of in nanofiber preparation, properties and functional applications. I am deeply appreciative of all the authors and have no doubt that their contribution will be a useful resource for anyone associated with the discipline of nanofibers.


Solution-based Assembly of Conjugated Polymers Into Nanofibers for Organic Electronics

Solution-based Assembly of Conjugated Polymers Into Nanofibers for Organic Electronics
Author: Daniel E. Acevedo Cartagena
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Solution-based Assembly of Conjugated Polymers Into Nanofibers for Organic Electronics Book in PDF, ePub and Kindle

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on chain orientation (i.e., the [pi] orbitals parallel to the substrate normal) from highly oriented pyrolytic graphite and graphene. Moreover, the P3HT crystal structure observed on the surface of graphene was identified to be the same one formed by solution crystallization. However, as confirmed by X-ray scattering and scanning electron microscopy the crystals transitioned from face-on to edge-on orientation (i.e., the [pi] orbitals perpendicular to the substrate normal) as the film grew thicker. As determined by X-ray scattering. the initial face-on conformation was partially preserved by embedding the P3HT structures in an indene C60 bisadduct matrix when compared to pristine P3HT films. The resulting organic field effect transistors had hole mobilities ([mu] = 20 x 10-3 cm2 V-1 s-1) two orders of magnitude higher than the devices fabricated from spin casted P3HT ([mu] = 0.9 x 10-3 cm2 V-1 s-1). The solution-processable fabrication of electrodes and semiconductors is potentially scalable and amenable to roll-to-roll manufacturing.


Preparation and Optical Properties of Electrospun Conjugated Polymer/polyethylene Oxide Nanofibers and Conjugated Polymer/nanoparticle Composites

Preparation and Optical Properties of Electrospun Conjugated Polymer/polyethylene Oxide Nanofibers and Conjugated Polymer/nanoparticle Composites
Author: Kezhen Yin
Publisher:
Total Pages: 154
Release: 2010
Genre:
ISBN:

Download Preparation and Optical Properties of Electrospun Conjugated Polymer/polyethylene Oxide Nanofibers and Conjugated Polymer/nanoparticle Composites Book in PDF, ePub and Kindle

Conjugated polymer nanocomposites with unique optical and electronic properties have attracted great interest in both fundamental science and potential optoelectronic applications. This thesis includes three projects on preparation and optical studies of nanocomposites containing conjugated polymers. The first project focuses on the photoluminescence properties of conjugated polymers poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT) in dilute solutions, and in the composites of MEH-PPV/polyethylene oxide (PEO) and P3HT/PEO with thin films, random electrospun nanofibers and aligned electrospun nanofibers morphologies. In dilute solutions, the conjugated polymer chain aggregated with addition of poor solvent. In the solid states, polarized luminescence spectra of this films prepared by spin-coating, random and aligned nanofibers prepared by electrospinning were measured. The emission anisotrphies of aligned nanofibers were above 0.5 and increased with drcreasing concentration of conjugated polymer in nanofibers, whereas the emission anisotropies of random fibers and thin films were below 0.2. The results indicated that the alignmed electrospun nanofibers would have the macromolecular chains oriented preferably along the nanofiber axes, which led to strong polarized emission. In the second project, effects of surface modification on the fouorescence properties were conjugated polymer/zinc oxide nanocomposites were studied. The ZnO nanoparticles with surface capped by PVP were better dispersed in the nanocomposites and were more efficient to quench the emission of MEH-PPV by charge transfer process, compared with the non-capped ZnO. In the third project, the stable Pd/poly(3,4-ethylenedioxythioprene): poly(styrenesulfonate) (Pd/PEDOT:PSS) colloid was synthesized. With addition of PSS, the Pd/PEDOT:PSS aqueous dispersion was formed by simultaneous oxidation-reduction reaction between Pd(NO3)2 and ethylenedioxypthiphene(EDOT) at room temperature. The Pd/PEDOT:PSS thin film was tested as the Pd?PEDOT:PSS this fild was testes a NHE3 sensor.


Conjugated Polymers for Next-Generation Applications, Volume 2

Conjugated Polymers for Next-Generation Applications, Volume 2
Author: Vijay Kumar
Publisher: Woodhead Publishing
Total Pages: 443
Release: 2022-06-23
Genre: Technology & Engineering
ISBN: 0128240954

Download Conjugated Polymers for Next-Generation Applications, Volume 2 Book in PDF, ePub and Kindle

Conjugated Polymers for Next-Generation Applications, Volume Two: Energy Storage Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more