Nano Scale Characterization Of Oxide Materials By Atomic Resolution Z Contrast Imaging And Eels PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nano Scale Characterization Of Oxide Materials By Atomic Resolution Z Contrast Imaging And Eels PDF full book. Access full book title Nano Scale Characterization Of Oxide Materials By Atomic Resolution Z Contrast Imaging And Eels.

Nanocharacterisation

Nanocharacterisation
Author: John Hutchison
Publisher: Royal Society of Chemistry
Total Pages: 319
Release: 2007-10-31
Genre: Science
ISBN: 1847557929

Download Nanocharacterisation Book in PDF, ePub and Kindle

Chemical characterisation techniques have been essential tools in underpinning the explosion in nanotechnology in recent years and nanocharacterisation is a rapidly developing field. Contributions in this book from leading teams across the globe provide an overview of the different microscopic techniques now in regular use for the characterisation of nanostructures. Essentially a handbook to all working in the field this indispensable resource provides a survey of microscopy based techniques with experimental procedures and extensive examples of state of the art characterisation methods including: Transmission Electron Microscopy, Electron Tomography, Tunneling Microscopy, Electron Holography, Electron Energy Loss Spectroscopy. This timely publication will appeal to academics, professionals and anyone working fields related to the research and development of nanocharacterisation and nanotechnology.


Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy
Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
Total Pages: 764
Release: 2011-03-24
Genre: Technology & Engineering
ISBN: 1441972005

Download Scanning Transmission Electron Microscopy Book in PDF, ePub and Kindle

Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.


Atomic Scale Characterization of Complex Oxide Thin Films

Atomic Scale Characterization of Complex Oxide Thin Films
Author: Meng Gu
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN: 9781267240491

Download Atomic Scale Characterization of Complex Oxide Thin Films Book in PDF, ePub and Kindle

Materials with the ABO3 perovskite structure possess a wide variety of properties including superconductivity, ferroelectric, and magnetic properties. These properties are highly tunable due to the fact that the B site cation can assume multiple valence states and its high structural stability allows for large scale doping and strain. Due to a reduced dimensionality, two dimensional thin films and superlattices grown using techniques such as pulsed laser deposition (PLD) often possess novel properties which differ from the bulk perovskite materials. The origins of these novel properties can be traced to interfacial chemical intermixing, electronic reconstruction, strain as well as defect formation, which cause significant changes in the electronic structures. Therefore, it is crucially important to investigate the atomic and electronic structures of the functional materials in order to understand the correlation between microstructures and physical properties. Chemically-sensitive Z-contrast imaging and bonding-sensitive electron energy loss spectroscopy (EELS) in aberration corrected scanning transmission electron microscopes (STEM) can directly characterize the local structure, strain, composition and bonding on the atomic scale. Determination of the atomic and electronic structures of the interfaces and defects in the thin films can then be correlated with the magnetic and transport properties. Therefore, the understanding of the structure-property relationship for several different systems of perovskite oxide thin films and superlattices were developed on the atomic scale. Multifunctional superlattices composed of ferromagnetic (FM) La(0.7)Sr(0.3)MnO3 (LSMO) and antiferromagnetic (AFM) La(0.7)Sr(0.3)FeO3 (LSFO) have potential applications for next generation data storage and logic devices. Defect formation, driven by strain relaxation in the LSMO/LSFO superlattices can modify not only the structure and surface sharpness, but also the functional properties of the superlattice. Stacking faults were found as one efficient way of strain relaxation while maintaining robust antiferromagnetic properties for a thin [3LSMO][6LSFO] superlattice (repeating motif composed of 3 unit-cell LSMO sublayer and 6 unit-cell LSFO sublayer). On the other hand, for a fully strained [3LSMO][6LSFO], large inter-diffusion across the interface between the LSMO and LSFO layers was detected in EELS line scans, resulting in deteriorated AFM properties. When a [6LSMO][6LSFO] superlattice with one micron thickness, a high density of nanoflowers and cracks/pinholes were observed to result from strain relaxation. The formation of these nanoflowers and cracks/pinholes was suppressed by increasing the growth rate and thereby reducing the growth time and overall thermal treatment of the sample. Strain relaxation was shown to be directly related to the growth conditions and have a large effect on both the structure and functional properties of the superlattices. A series of superlattices composed of non-magnetic La(0.5)Sr(0.5)TiO3 (LSTO) and ferromagnetic LSMO were grown on single crystal oxide substrates with different amounts of misfit strain. No significant electronic structure changes along the interfaces was observed in this series of superlattices as revealed by atomic resolution EELS. In comparison, charge transfer effect was reported for the LSMO/STO superlattices and was shown to cause an ultrathin magnetic dead layer along the interfaces. Thus, compared with the LSMO/STO superlattice, composition tuning of the sublayers was proven to be efficient in controlling the interfacial charge transfer effects in a superlattice. In addition, tetragonal distortion was found to reduce the ferromagnetic ordering, decrease the Tc, increase the resistivity, and even lead to metal-insulator transitions of the superlattices. The strain relaxation defects such as dislocations and low angle grain boundaries serve as important pinning sites for magnetic domains, leading to enhanced coercive field strength. In order to determine the properties of an intermixed interface layer, we have performed a detailed study of the solid solution between LSMO and LSFO, i.e. La(0.7)Sr(0.3)Mn(0.5)Fe(0.5)O3 (LSMFO). A large target-substrate distance during the PLD growth led to cation segregation in the LSMFO film. Cation segregation could cause the formation of diverse local magnetic ordering and B site valence states due to the different local stoichiometry and coordination environment. For the cation segregated LSFMO films, robust ferromagnetic and antiferromagnetic coupling was observed at 150K and room temperature. Decreasing the target-substrate distance resulted to a homogeneous cation distribution in the film, without any ferromagnetic ordering as expected. This result suggests the important role of target-substrate distance and the kinetic energy of the plume species on the crystalline quality and functional properties of perovskite oxide thin films. La(x)Sr(1-x)TiO3 possesses a wide range of functional properties which make it an attractive candidate material for applications such as the conductive buffer for high temperature superconductor growth, transparent conductors, and anodes in solid oxide fuel cells. La(0.5)Sr(0.5)TiO3 thin films were grown using PLD and the resistivity was found to be highly dependent on the O2 background pressure used in the deposition. However, a thin film which was deposited as a single phase film was transformed into a semi-ordered superlattice with TiO2 rich stacking faults and distorted lattices upon exposure to high oxygen pressure (~200torr) during the cooling procedure after deposition. This phase change stabilized Ti4+ ions and dramatically increased the resistivity of the film. In addition, a two dimensional free electron gas could be constructed by confining a few unit cells of La doped STO with STO spacer layers. Our study showed that charge transfer over a distance of ~2 u.c. was present in Sr(0.75)La(0.25)TiO3/STO superlattices. This thickness defined the lower limit for the thickness of the STO spacers in order to confine the charge carriers into two dimensions; secondly, the La dopants were shown to be less localized in thicker superlattice (~100nm) due to interdiffusion upon extended thermal exposure. This information provided important feedback on the fabrication and utilization of this material.In conclusion, several perovskite thin film systems with fascinating properties have been explored in this thesis. Strain states and strain relaxations, defect formation, interfacial atomic mixing, charge transfer, and cation segregation were shown to have profound effect on the functional properties of complex oxide thin film systems. Atomic resolution Z-contrast imaging and EELS provide extremely useful information on the structural and electronic structure variations, which enable us to see the whole picture of growth, structure and properties' interactions.


Progress in Nanoscale Characterization and Manipulation

Progress in Nanoscale Characterization and Manipulation
Author: Rongming Wang
Publisher: Springer
Total Pages: 511
Release: 2018-08-30
Genre: Science
ISBN: 9811304548

Download Progress in Nanoscale Characterization and Manipulation Book in PDF, ePub and Kindle

This book focuses on charged-particle optics and microscopy, as well as their applications in the materials sciences. Presenting a range of cutting-edge theoretical and methodological advances in electron microscopy and microanalysis, and examining their crucial roles in modern materials research, it offers a unique resource for all researchers who work in ultramicroscopy and/or materials research. The book addresses the growing opportunities in this field and introduces readers to the state of the art in charged-particle microscopy techniques. It showcases recent advances in scanning electron microscopy, transmission electron microscopy and helium ion microscopy, including advanced spectroscopy, spherical-corrected microscopy, focused-ion imaging and in-situ microscopy. Covering these and other essential topics, the book is intended to facilitate the development of microscopy techniques, inspire young researchers, and make a valuable contribution to the field.


Atomic Resolution Studies of Oxide Superlattices and Ultrathin Films

Atomic Resolution Studies of Oxide Superlattices and Ultrathin Films
Author: Amish B. Shah
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Atomic Resolution Studies of Oxide Superlattices and Ultrathin Films Book in PDF, ePub and Kindle

The ability to grow ultrathin films layer-by-layer with well-defined epitaxial relationships has allowed research groups worldwide to grow a range of artificial films and superlattices, first for semiconductors, and now with oxides. In the oxides thin film research community, there have been concerted efforts recently to develop a number of epitaxial oxide systems grown on single crystal oxide substrates that display a wide variety of novel interfacial functionality, such as enhanced ferromagnetic ordering, increased charge carrier density, increased optical absorption, etc, at interfaces. The magnitude of these novel properties is dependent upon the structure of thin films, especially interface sharpness, intermixing, defects, and strain, layering sequence in the case of superlattices and the density of interfaces relative to the film thicknesses. To understand the relationship between the interfacial thin film oxide atomic structure and its properties, atomic scale characterization is required. Transmission electron microscopy (TEM) offers the ability to study interfaces of films at high resolution. Scanning transmission electron microscopy (STEM) allows for real space imaging of materials with directly interpretable atomic number contrast. Electron energy loss spectroscopy (EELS), together with STEM, can probe the local chemical composition as well as local electronic states of transition metals and oxygen. Both techniques have been significantly improved by aberration correctors, which reduce the probe size to 1 ©5, or less. Aberration correctors have thus made it possible to resolve individual atomic columns, and possibly probe the electronic structure at atomic scales. Separately, using electron probe forming lenses, structural information such as the crystal structure, strain, lattice mismatches, and superlattice ordering can be measured by nanoarea electron diffraction (NED). The combination of STEM, EELS, and NED techniques allows us to gain a fundamental understanding of the properties of oxide superlattices and ultrathin films and their relationship with the corresponding atomic and electronic structure. In this dissertation, I use the aforementioned electron microscopy techniques to investigate several oxide superlattice and ultrathin film systems. The major findings are summarized below. These results were obtained with stringent specimen preparation methods that I developed for high resolution studies, which are described in Chapter 2. The essential materials background and description of electron microscopy techniques are given in Chapter 1 and 2. In a LaMnO3-SrMnO3 superlattice, we demonstrate the interface of LaMnO3-SrMnO3 is sharper than the SrMnO3-LaMnO3 interface. Extra spectral weights in EELS are confined to the sharp interface, whereas at the rougher interface, the extra states are either not present or are not confined to the interface. Both the structural and electronic asymmetries correspond to asymmetric magnetic ordering at low temperature. In a short period LaMnO3-SrTiO3 superlattice for optical applications, we discovered a modified band structure in SrTiO3 ultrathin films relative to thick films and a SrTiO3 substrate, due to charge leakage from LaMnO3 in SrTiO3. This was measured by chemical shifts of the Ti L and O K edges using atomic scale EELS. The interfacial sharpness of LaAlO3 films grown on SrTiO3 was investigated by the STEM/EELS technique together with electron diffraction. This interface, when prepared under specific conditions, is conductive with high carrier mobility. Several suggestions for the conductive interface have been proposed, including a polar catastrophe model, where a large built-in electric field in LaAlO3 films results in electron charge transfer into the SrTiO3 substrate. Other suggested possibilities include oxygen vacancies at the interface and/or oxygen vacancies in the substrate. The abruptness of the interface as well as extent of intermixing has not been thoroughly investigated at high resolution, even though this can strongly influence the electrical transport properties. We found clear evidence for cation intermixing through the LaAlO3-SrTiO3 interface with high spatial resolution EELS and STEM, which contributes to the conduction at the interface. We also found structural defects, such as misfit dislocations, which leads to increased intermixing over coherent interfaces.


ATOMIC SCALE CHARACTERIZATION OF OXYGEN VACANCY DYNAMICS BY IN SITU REDUCTION AND ANALYTICAL ATOMIC RESOLUTION STEM.

ATOMIC SCALE CHARACTERIZATION OF OXYGEN VACANCY DYNAMICS BY IN SITU REDUCTION AND ANALYTICAL ATOMIC RESOLUTION STEM.
Author:
Publisher:
Total Pages: 2
Release: 2002
Genre:
ISBN:

Download ATOMIC SCALE CHARACTERIZATION OF OXYGEN VACANCY DYNAMICS BY IN SITU REDUCTION AND ANALYTICAL ATOMIC RESOLUTION STEM. Book in PDF, ePub and Kindle

In this study, we present nano-scale investigations of point defect dynamics in perovskite oxides by correlated atomic resolution high angle annular dark field imaging (HAADF) and electron energy loss spectroscopy (EELS). The point defect dynamics and interactions during in-situ reduction in the microscope column are analyzed. In particular, oxygen vacancy creation, diffusion and clustering are studied, as oxygen vacancies comprise the majority of the point defects present in these perovskite oxide systems [1]. The results have been acquired using the JEOL2010F, a STEM/TEM, equipped with a 200 keV field emission gun, a high angle annular dark field detector and a post column Gatan imaging filter (GIF). The combination of the Z-contrast and EELS techniques [2] allows us to obtain direct images (spatial resolution of 2 Å) of the atomic structure and to correlate this information with the atomically resolved EELS information (3s acquisition time, 1.2 eV energy resolution). In-situ heating of the material is performed in a Gatan double tilt holder with a temperature range of 300 K-773 K at an oxygen partial pressure of P{sub O{sub 2}} = 5 * 10−8 Pa.


Characterization of Solid Materials and Heterogeneous Catalysts, 2 Volume Set

Characterization of Solid Materials and Heterogeneous Catalysts, 2 Volume Set
Author: Michel Che
Publisher: John Wiley & Sons
Total Pages: 1313
Release: 2012-05-14
Genre: Technology & Engineering
ISBN: 3527326871

Download Characterization of Solid Materials and Heterogeneous Catalysts, 2 Volume Set Book in PDF, ePub and Kindle

This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. Vedrine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.