Multiscale Modeling Of Particle Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Modeling Of Particle Interactions PDF full book. Access full book title Multiscale Modeling Of Particle Interactions.

Multiscale Modeling of Particle Interactions

Multiscale Modeling of Particle Interactions
Author: Michael King
Publisher: John Wiley & Sons
Total Pages: 398
Release: 2010-03-30
Genre: Science
ISBN: 047057982X

Download Multiscale Modeling of Particle Interactions Book in PDF, ePub and Kindle

Discover how the latest computational tools are building our understanding of particle interactions and leading to new applications With this book as their guide, readers will gain a new appreciation of the critical role that particle interactions play in advancing research and developing new applications in the biological sciences, chemical engineering, toxicology, medicine, and manufacturing technology The book explores particles ranging in size from cations to whole cells to tissues and processed materials. A focus on recreating complex, real-world dynamical systems helps readers gain a deeper understanding of cell and tissue mechanics, theoretical aspects of multiscale modeling, and the latest applications in biology and nanotechnology. Following an introductory chapter, Multiscale Modeling of Particle Interactions is divided into two parts: Part I, Applications in Nanotechnology, covers: Multiscale modeling of nanoscale aggregation phenomena: applications in semiconductor materials processing Multiscale modeling of rare events in self-assembled systems Continuum description of atomic sheets Coulombic dragging and mechanical propelling of molecules in nanofluidic systems Molecular dynamics modeling of nanodroplets and nanoparticles Modeling the interactions between compliant microcapsules and patterned surfaces Part II, Applications in Biology, covers: Coarse-grained and multiscale simulations of lipid bilayers Stochastic approach to biochemical kinetics In silico modeling of angiogenesis at multiple scales Large-scale simulation of blood flow in microvessels Molecular to multicellular deformation during adhesion of immune cells under flow Each article was contributed by one or more leading experts and pioneers in the field. All readers, from chemists and biologists to engineers and students, will gain new insights into how the latest tools in computational science can improve our understanding of particle interactions and support the development of novel applications across the broad spectrum of disciplines in biology and nanotechnology.


Multiscale Modeling of Particle Interactions

Multiscale Modeling of Particle Interactions
Author: Michael King
Publisher: Wiley
Total Pages: 388
Release: 2010-03-22
Genre: Science
ISBN: 9780470242353

Download Multiscale Modeling of Particle Interactions Book in PDF, ePub and Kindle

Discover how the latest computational tools are building our understanding of particle interactions and leading to new applications With this book as their guide, readers will gain a new appreciation of the critical role that particle interactions play in advancing research and developing new applications in the biological sciences, chemical engineering, toxicology, medicine, and manufacturing technology The book explores particles ranging in size from cations to whole cells to tissues and processed materials. A focus on recreating complex, real-world dynamical systems helps readers gain a deeper understanding of cell and tissue mechanics, theoretical aspects of multiscale modeling, and the latest applications in biology and nanotechnology. Following an introductory chapter, Multiscale Modeling of Particle Interactions is divided into two parts: Part I, Applications in Nanotechnology, covers: Multiscale modeling of nanoscale aggregation phenomena: applications in semiconductor materials processing Multiscale modeling of rare events in self-assembled systems Continuum description of atomic sheets Coulombic dragging and mechanical propelling of molecules in nanofluidic systems Molecular dynamics modeling of nanodroplets and nanoparticles Modeling the interactions between compliant microcapsules and patterned surfaces Part II, Applications in Biology, covers: Coarse-grained and multiscale simulations of lipid bilayers Stochastic approach to biochemical kinetics In silico modeling of angiogenesis at multiple scales Large-scale simulation of blood flow in microvessels Molecular to multicellular deformation during adhesion of immune cells under flow Each article was contributed by one or more leading experts and pioneers in the field. All readers, from chemists and biologists to engineers and students, will gain new insights into how the latest tools in computational science can improve our understanding of particle interactions and support the development of novel applications across the broad spectrum of disciplines in biology and nanotechnology.


Multiscale Modeling of Multimaterial Systems Using a Kriging Based Approach

Multiscale Modeling of Multimaterial Systems Using a Kriging Based Approach
Author: Oishik Sen
Publisher:
Total Pages: 168
Release: 2016
Genre: Kriging
ISBN:

Download Multiscale Modeling of Multimaterial Systems Using a Kriging Based Approach Book in PDF, ePub and Kindle

It is shown that unlike the DKG method, the MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. In macroscale models for shock-particle interactions, Subgrid Particle Reynolds' Stress Equivalent (SPARSE) terms arise because of velocity fluctuations due to fluid-particle interaction in the subgrid/meso scales. Mesoscale computations are performed to calculate the SPARSE terms and the kinetic energy of the fluctuations for different values of Mach Number and particle volume fraction. Closure laws for SPARSE terms are constructed using the MBKG method. It is found that the directions normal and parallel to those of shock propagation are the principal directions of the SPARSE tensor. It is also found that the kinetic energy of the fluctuations is independent of the particle volume fraction and is 12-15% of the incoming shock kinetic energy for higher Mach Numbers. Finally, the thesis addresses the cost of performing large ensembles of resolved mesoscale computations for constructing surrogates. Variable fidelity techniques are used to construct an initial surrogate from ensembles of coarse-grid, relative inexpensive computations, while the use of resolved high-fidelity simulations is limited to the correction of initial surrogate. Different variable-fidelity techniques, viz the Space Mapping Method, RBFs and the MBKG methods are evaluated based on their ability to correct the initial surrogate. It is found that the MBKG method uses the least number of resolved mesoscale computations to correct the low-fidelity metamodel. Instead of using 56 high-fidelity computations for obtaining a surrogate, the MBKG method constructs surrogates from only 15 resolved computations, resulting in drastic reduction of computational cost.


Particle Methods for Multi-Scale and Multi-physics

Particle Methods for Multi-Scale and Multi-physics
Author: Moubin E. T. Al LIU
Publisher: World Scientific
Total Pages: 400
Release: 2015-12-28
Genre: Science
ISBN: 9814571709

Download Particle Methods for Multi-Scale and Multi-physics Book in PDF, ePub and Kindle

Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --


Multiscale Modeling

Multiscale Modeling
Author: Pedro Derosa
Publisher: CRC Press
Total Pages: 310
Release: 2010-12-09
Genre: Science
ISBN: 1439810400

Download Multiscale Modeling Book in PDF, ePub and Kindle

While the relevant features and properties of nanosystems necessarily depend on nanoscopic details, their performance resides in the macroscopic world. To rationally develop and accurately predict performance of these systems we must tackle problems where multiple length and time scales are coupled. Rather than forcing a single modeling approach to


Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publisher: Springer Science & Business Media
Total Pages: 863
Release: 2008
Genre: Science
ISBN: 3540751165

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, ePub and Kindle

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale. The chapters follow this classification. The book will explain in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are occasionally included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. Methods are explained, if possible, on the basis of the original publications but also references to standard text books established in the various fields are mentioned.


Multiscale Modeling of Flows Containing Particles

Multiscale Modeling of Flows Containing Particles
Author:
Publisher:
Total Pages: 79
Release: 2007
Genre: Liquids
ISBN:

Download Multiscale Modeling of Flows Containing Particles Book in PDF, ePub and Kindle

Multiscale mathematical modeling of flows containing particles is conducted in this study using computational fluid dynamics and molecular dynamics. The first study considered continuous media interaction of macro-scale fluid and micro-scale solid particles using computational fluid dynamics and rigid particle dynamics. This study investigates the potential enhancement of heat transfer properties of particulate fluid as well as the effect of injected particles on fluid profiles, and pressure on walls under different particle injection conditions. In the second part of this research, the molecular dynamics simulation was performed to simulate solid-liquid interaction at the molecular level (nanotechnology) to understand their behaviors. The results from two different scales were compared qualitatively.


From Multiscale Modeling to Meso-Science

From Multiscale Modeling to Meso-Science
Author: Jinghai Li
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2013-03-22
Genre: Technology & Engineering
ISBN: 3642351891

Download From Multiscale Modeling to Meso-Science Book in PDF, ePub and Kindle

Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.


Multi-scale Analysis for Random Quantum Systems with Interaction

Multi-scale Analysis for Random Quantum Systems with Interaction
Author: Victor Chulaevsky
Publisher: Springer Science & Business Media
Total Pages: 246
Release: 2013-09-20
Genre: Mathematics
ISBN: 1461482267

Download Multi-scale Analysis for Random Quantum Systems with Interaction Book in PDF, ePub and Kindle

The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd. This book includes the following cutting-edge features: an introduction to the state-of-the-art single-particle localization theory an extensive discussion of relevant technical aspects of the localization theory a thorough comparison of the multi-particle model with its single-particle counterpart a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model. Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.


Multiscale Modeling of Vascular Dynamics of Micro- and Nano-particles

Multiscale Modeling of Vascular Dynamics of Micro- and Nano-particles
Author: Huilin Ye
Publisher: Morgan & Claypool Publishers
Total Pages: 112
Release: 2020-01-02
Genre: Science
ISBN: 1643277928

Download Multiscale Modeling of Vascular Dynamics of Micro- and Nano-particles Book in PDF, ePub and Kindle

Recent advances witness the potential to employ nanomedicine and game-changing methods to deliver drug molecules directly to diseased sites. To optimize and then enhance the efficacy and specificity, the control and guidance of drug carriers in vasculature has become crucial. Current bottlenecks in the optimal design of drug carrying particles are the lack of knowledge about the transport of particles, adhesion on endothelium wall and subsequent internalization into diseased cells. To study the transport and adhesion of particle in vasculature, the authors have made great efforts to numerically investigate the dynamic and adhesive motions of particles in the blood flow. This book discusses the recent achievements from the establishment of fundamental physical problem to development of multiscale model, and finally large scale simulations for understanding transport of particle-based drug carriers in blood flow.