Multiscale Modeling In Nanophotonics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Modeling In Nanophotonics PDF full book. Access full book title Multiscale Modeling In Nanophotonics.

Multiscale Modeling in Nanophotonics

Multiscale Modeling in Nanophotonics
Author: Alexander Bagaturyants
Publisher: CRC Press
Total Pages: 274
Release: 2017-11-22
Genre: Science
ISBN: 1351614061

Download Multiscale Modeling in Nanophotonics Book in PDF, ePub and Kindle

The idea of theoretically predicting the useful properties of various materials using multiscale simulations has become popular in recent years. Of special interest are nanostructured, organic functional materials, which have a hierarchical structure and are considered materials of the future because of their flexibility and versatility. Their functional properties are inherited from the molecule that lies at the heart of the hierarchical structure. On the other hand, the properties of this functional molecule, in particular its absorption and emission spectra, strongly depend on its interactions with its molecular environment. Therefore, the multiscale simulations used to predict the properties of organic functional materials should be atomistic, that is, they should be based on classical and/or quantum methods that explicitly take into account the molecular structure and intermolecular interactions at the atomic level. This book, written by well-known specialists in theoretical chemistry, focuses on the basics of classical mechanics, quantum chemistry methods used for molecular disordered materials, classical methods of molecular simulations of disordered materials, vibronic interactions, and applications (presented as multiscale strategies for atomistic simulations of photonic materials). It has been edited by Professor Mikhail Alfimov, a renowned Russian scientist, a full member of the Russian Academy of Sciences, Russia, and the founder, first director, and now research supervisor of the Photochemistry Center of the Russian Academy of Science, Russia. Professor Alfimov’s main research interests are in the field of photochemistry and photophysics of molecular and supramolecular systems. The book is a great reference for advanced undergraduate- and graduate-level students of nanotechnology and molecular science and researchers in nano- and molecular science, nanotechnology, chemistry, and physical chemistry, especially those with an interest in functional materials.


Computational Multiscale Modeling of Multiphase Nanosystems

Computational Multiscale Modeling of Multiphase Nanosystems
Author: Alexander V. Vakhrushev
Publisher: CRC Press
Total Pages: 426
Release: 2017-10-10
Genre: Science
ISBN: 1351800264

Download Computational Multiscale Modeling of Multiphase Nanosystems Book in PDF, ePub and Kindle

Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.


Multiscale Modeling of Nano-scale Phenomena

Multiscale Modeling of Nano-scale Phenomena
Author: D. White
Publisher:
Total Pages: 24
Release: 2003
Genre:
ISBN:

Download Multiscale Modeling of Nano-scale Phenomena Book in PDF, ePub and Kindle

In this white paper, a road map is presented to establish a multiphysics simulation capability for the design and optimization of sensor systems that incorporate nanomaterials and technologies. The Engineering Directorate's solid/fluid mechanics and electromagnetic computer codes will play an important role in both multiscale modeling and integration of required physics issues to achieve a baseline simulation capability. Molecular dynamic simulations performed primarily in the BBRP, CMS and PAT directorates, will provide information for the construction of multiscale models. All of the theoretical developments will require closely coupled experimental work to develop material models and validate simulations. The plan is synergistic and complimentary with the Laboratory's emerging core competency of multiscale modeling. The first application of the multiphysics computer code is the simulation of a ''simple'' biological system (protein recognition utilizing synthesized ligands) that has a broad range of applications including detection of biological threats, presymptomatic detection of illnesses, and drug therapy. While the overall goal is to establish a simulation capability, the near-term work is mainly focused on (1) multiscale modeling, i.e., the development of ''continuum'' representations of nanostructures based on information from molecular dynamics simulations and (2) experiments for model development and validation. A list of LDRDER proposals and ongoing projects that could be coordinated to achieve these near-term objectives and demonstrate the feasibility and utility of a multiphysics simulation capability is given.


Modeling, Characterization and Production of Nanomaterials

Modeling, Characterization and Production of Nanomaterials
Author:
Publisher: Elsevier
Total Pages: 555
Release: 2015-03-17
Genre: Technology & Engineering
ISBN: 1782422358

Download Modeling, Characterization and Production of Nanomaterials Book in PDF, ePub and Kindle

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world


Multiscale Modeling

Multiscale Modeling
Author: Pedro Derosa
Publisher: CRC Press
Total Pages: 310
Release: 2010-12-09
Genre: Science
ISBN: 1439810400

Download Multiscale Modeling Book in PDF, ePub and Kindle

While the relevant features and properties of nanosystems necessarily depend on nanoscopic details, their performance resides in the macroscopic world. To rationally develop and accurately predict performance of these systems we must tackle problems where multiple length and time scales are coupled. Rather than forcing a single modeling approach to


Computational Nanophotonics

Computational Nanophotonics
Author: Sarhan Musa
Publisher: CRC Press
Total Pages: 541
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 1466558784

Download Computational Nanophotonics Book in PDF, ePub and Kindle

This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.


Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics
Author: Christopher R. Weinberger
Publisher: Springer
Total Pages: 547
Release: 2018-06-12
Genre: Technology & Engineering
ISBN: 9783319815244

Download Multiscale Materials Modeling for Nanomechanics Book in PDF, ePub and Kindle

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.


Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer

Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer
Author: Ilia A. Solov’yov
Publisher: Springer
Total Pages: 451
Release: 2018-07-29
Genre: Science
ISBN: 9783319858227

Download Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer Book in PDF, ePub and Kindle

This book introduces readers to MesoBioNano (MBN) Explorer – a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface – the MBN Studio – which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science – ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system’s energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer’s usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).


Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics
Author: Ugo Galvanetto
Publisher: Imperial College Press
Total Pages: 349
Release: 2010
Genre: Science
ISBN: 1848163088

Download Multiscale Modeling in Solid Mechanics Book in PDF, ePub and Kindle

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.


Modeling, Characterization, and Production of Nanomaterials

Modeling, Characterization, and Production of Nanomaterials
Author: Vinod Tewary
Publisher: Woodhead Publishing
Total Pages: 628
Release: 2022-11-09
Genre: Technology & Engineering
ISBN: 0128199199

Download Modeling, Characterization, and Production of Nanomaterials Book in PDF, ePub and Kindle

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green’s function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing