Multiobjective Linear And Integer Programming PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiobjective Linear And Integer Programming PDF full book. Access full book title Multiobjective Linear And Integer Programming.

Multiobjective Linear and Integer Programming

Multiobjective Linear and Integer Programming
Author: Carlos Henggeler Antunes
Publisher: Springer
Total Pages: 216
Release: 2016-04-08
Genre: Business & Economics
ISBN: 331928746X

Download Multiobjective Linear and Integer Programming Book in PDF, ePub and Kindle

This book opens the door to multiobjective optimization for students in fields such as engineering, management, economics and applied mathematics. It offers a comprehensive introduction to multiobjective optimization, with a primary emphasis on multiobjective linear programming and multiobjective integer/mixed integer programming. A didactic book, it is mainly intended for undergraduate and graduate students, but can also be useful for researchers and practitioners. Further, it is accompanied by an interactive software package - developed by the authors for Windows platforms - which can be used for teaching and decision-making support purposes in multiobjective linear programming problems. Thus, besides the textbook’s coverage of the essential concepts, theory and methods, complemented with illustrative examples and exercises, the computational tool enables students to experiment and enhance their technical skills, as well as to capture the essential characteristics of real-world problems.


Multiobjective Linear Programming

Multiobjective Linear Programming
Author: Dinh The Luc
Publisher: Springer
Total Pages: 328
Release: 2015-07-31
Genre: Business & Economics
ISBN: 3319210912

Download Multiobjective Linear Programming Book in PDF, ePub and Kindle

This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.


Linear and Integer Programming

Linear and Integer Programming
Author: Gerard Sierksma
Publisher: CRC Press
Total Pages: 664
Release: 2001-11-01
Genre: Mathematics
ISBN: 9780824706739

Download Linear and Integer Programming Book in PDF, ePub and Kindle

"Combines the theoretical and practical aspects of linear and integer programming. Provides practical case studies and techniques, including rounding-off, column-generation, game theory, multiobjective optimization, and goal programming, as well as real-world solutions to the transportation and transshipment problem, project scheduling, and decentralization."


Linear Multiobjective Programming

Linear Multiobjective Programming
Author: M. Zeleny
Publisher: Springer Science & Business Media
Total Pages: 233
Release: 2012-12-06
Genre: Computers
ISBN: 3642808085

Download Linear Multiobjective Programming Book in PDF, ePub and Kindle

1.1. The origin of the multiobjective problem and a short historical review The continuing search for a discovery of theories, tools and c- cepts applicable to decision-making processes has increased the complexity of problems eligible for analytical treatment. One of the more pertinent criticisms of current decision-making theory and practice is directed against the traditional approximation of multiple goal behavior of men and organizations by single, technically-convenient criterion. Reins- tementof the role of human judgment in more realistic, multiple goal se,ttings has been one of the ma~or recent developments in the literature. Consider the following simplified problem. There is a large number of people to be transported daily between two industrial areas and their adjacent residential areas. Given some budgetary and technological c- straints we would like to determine optimal transportation modes as well as the number of units of each to be scheduled for service. What is the optimal solution? Are we interested in the cheapest transportation? Do we want the fastest, the safest, the cleanest, the most profitable, the most durable? There are many criteria which are to be considered: travel times, consumer's cost, construction cost, operating cost, expected fatalities and injuries, probability of delays, etc.


Linear Integer Programming

Linear Integer Programming
Author: Elias Munapo
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 204
Release: 2021-12-06
Genre: Computers
ISBN: 3110703114

Download Linear Integer Programming Book in PDF, ePub and Kindle

This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated.


Operations Research. Optimization With Matlab. Multiobjective, Quadratic and Mixed Programming

Operations Research. Optimization With Matlab. Multiobjective, Quadratic and Mixed Programming
Author: Perez C.
Publisher:
Total Pages: 278
Release: 2017-08-16
Genre:
ISBN: 9781974587209

Download Operations Research. Optimization With Matlab. Multiobjective, Quadratic and Mixed Programming Book in PDF, ePub and Kindle

The generalization of optimization theory and techniques to other formulations comprises a large area of applied mathematics. Optimization includes finding "best available" values of some objective function given a defined domain (or input), including a variety of different types of objective functions and different types of domains.Adding more than one objective to an optimization problem adds complexity. For example, to optimize a structural design, one would desire a design that is both light and rigid. When two objectives conflict, a trade-off must be created. There may be one lightest design, one stiffest design, and an infinite number of designs that are some compromise of weight and rigidity. The set of trade-off designs that cannot be improved upon according to one criterion without hurting another criterion is known as the Pareto set. The curve created plotting weight against stiffness of the best designs is known as the Pareto frontier.A design is judged to be "Pareto optimal" (equivalently, "Pareto efficient" or in the Pareto set) if it is not dominated by any other design: If it is worse than another design in some respects and no better in any respect, then it is dominated and is not Pareto optimal. The choice among "Pareto optimal" solutions to determine the "favorite solution" is delegated to the decision maker. In other words, defining the problem as multi-objective optimization signals that some information is missing: desirable objectives are given but combinations of them are not rated relative to each other. In some cases, the missing information can be derived by interactive sessions with the decision maker.Multi-objective optimization problems have been generalized further into vector optimization problems where the (partial) ordering is no longer given by the Pareto ordering.Optimization problems are often multi-modal; that is, they possess multiple good solutions. They could all be globally good or there could be a mix of globally good and locally good solutions. Obtaining all (or at least some of) the multiple solutions is the goal of a multi-modal optimizer.Classical optimization techniques due to their iterative approach do not perform satisfactorily when they are used to obtain multiple solutions, since it is not guaranteed that different solutions will be obtained even with different starting points in multiple runs of the algorithm. Evolutionary algorithms, however, are a very popular approach to obtain multiple solutions in a multi-modal optimization task.This book develops the following topics:* "Multiobjective Optimization Algorithms" * "Using fminimax with a Simulink Model" * "Signal Processing Using fgoalattain" * "Generate and Plot a Pareto Front" * "Linear Programming Algorithms" * "Maximize Long-Term Investments Using Linear Programming" * "Mixed-Integer Linear Programming Algorithms" * "Tuning Integer Linear Programming" * "Mixed-Integer Linear Programming Basics" * "Optimal Dispatch of Power Generators" * "Mixed-Integer Quadratic Programming Portfolio Optimization" * "Quadratic Programming Algorithms"* "Quadratic Minimization with Bound Constraints" * "Quadratic Minimization with Dense, Structured Hessian"* "Large Sparse Quadratic Program with Interior Point Algorithm" * "Least-Squares (Model Fitting) Algorithms" * "lsqnonlin with a Simulink Model" * "Nonlinear Least Squares With and Without Jacobian" * "Linear Least Squares with Bound Constraints" * "Optimization App with the lsqlin Solver" * "Maximize Long-Term Investments Using Linear Programming" * "Jacobian Multiply Function with Linear Least Squares" * "Nonlinear Curve Fitting with lsqcurvefit" * "Fit a Model to Complex-Valued Data" * "Systems of Equations" * "Nonlinear Equations with Analytic Jacobian" * "Nonlinear Equations with Jacobian" * "Nonlinear Equations with Jacobian Sparsity Pattern"* "Nonlinear Systems with Constraints" * "Parallel Computing for Optimization"


A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization

A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization
Author: Stefan Rocktäschel
Publisher: Springer Nature
Total Pages: 70
Release: 2020-01-21
Genre: Mathematics
ISBN: 3658291494

Download A Branch-and-Bound Algorithm for Multiobjective Mixed-integer Convex Optimization Book in PDF, ePub and Kindle

Stefan Rocktäschel introduces a branch-and-bound algorithm that determines a cover of the efficient set of multiobjective mixed-integer convex optimization problems. He examines particular steps of this algorithm in detail and enhances the basic algorithm with additional modifications that ensure a more precise cover of the efficient set. Finally, he gives numerical results on some test instances.


Multi-Objective Optimization in Theory and Practice I: Classical Methods

Multi-Objective Optimization in Theory and Practice I: Classical Methods
Author: Andre A. Keller
Publisher: Bentham Science Publishers
Total Pages: 296
Release: 2017-12-13
Genre: Technology & Engineering
ISBN: 1681085682

Download Multi-Objective Optimization in Theory and Practice I: Classical Methods Book in PDF, ePub and Kindle

Multi-Objective Optimization in Theory and Practice is a traditional two-part approach to solving multi-objective optimization (MOO) problems namely the use of classical methods and evolutionary algorithms. This first book is devoted to classical methods including the extended simplex method by Zeleny and preference-based techniques. This part covers three main topics through nine chapters. The first topic focuses on the design of such MOO problems, their complexities including nonlinearities and uncertainties, and optimality theory. The second topic introduces the founding solving methods including the extended simplex method to linear MOO problems and weighting objective methods. The third topic deals with particular structures of MOO problems, such as mixed-integer programming, hierarchical programming, fuzzy logic programming, and bimatrix games. Multi-Objective Optimization in Theory and Practice is a user-friendly book with detailed, illustrated calculations, examples, test functions, and small-size applications in Mathematica® (among other mathematical packages) and from scholarly literature. It is an essential handbook for students and teachers involved in advanced optimization courses in engineering, information science, and mathematics degree programs.


Linear and Integer Optimization

Linear and Integer Optimization
Author: Gerard Sierksma
Publisher: CRC Press
Total Pages: 676
Release: 2015-05-01
Genre: Business & Economics
ISBN: 1498743129

Download Linear and Integer Optimization Book in PDF, ePub and Kindle

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models


Linear and Integer Programming

Linear and Integer Programming
Author: Gerard Sierksma
Publisher: CRC Press
Total Pages: 704
Release: 1996
Genre: Business & Economics
ISBN:

Download Linear and Integer Programming Book in PDF, ePub and Kindle

This unique reference/text details the theoretical and practical aspects of linear and integer programming - covering a wide range of subjects, including duality, optimality criteria, sensitivity analysis, and numerous solution techniques for linear programming problems. Requiring only an elementary knowledge of set theory, trigonometry, and calculus, Linear and Integer Programming reflects both the problem-analyzing and problem-solving abilities of linear and integer programming ... presents the more rigorous mathematical material in such a way that it can be easily skipped without disturbing the readability of the text ... contains important pedagogical features such as a user-friendly, IBM-compatible computer software package for solving linear-programming problems, numerous case studies, fully worked examples, helpful end-of-chapter exercises, the answers to selected problems, key literature citations, and over 1375 equations, drawings, and tables ... and more. Linear and Integer programming is a fundamental reference for applied mathematicians, operations researchers, computer scientists, economists, and industrial engineers, as well as an ideal text for upper-level undergraduate and graduate students in this disciplines.