Multifunctional Oxide Heterostructures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multifunctional Oxide Heterostructures PDF full book. Access full book title Multifunctional Oxide Heterostructures.

Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures
Author: Evgeny Y. Tsymbal
Publisher: Oxford University Press
Total Pages: 429
Release: 2012-08-30
Genre: Science
ISBN: 0199584125

Download Multifunctional Oxide Heterostructures Book in PDF, ePub and Kindle

This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.


Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures
Author: Evgeny Y. Tsymbal
Publisher: OUP Oxford
Total Pages: 416
Release: 2012-08-30
Genre: Science
ISBN: 0191642223

Download Multifunctional Oxide Heterostructures Book in PDF, ePub and Kindle

This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.


Optical Characterization of Interface Magnetization in Multifunctional Oxide Heterostructures

Optical Characterization of Interface Magnetization in Multifunctional Oxide Heterostructures
Author: Fan Fang (Ph.D.)
Publisher:
Total Pages:
Release: 2016
Genre: Heterostructures
ISBN:

Download Optical Characterization of Interface Magnetization in Multifunctional Oxide Heterostructures Book in PDF, ePub and Kindle

Multifunctional oxides attract much attention recently. The strong correlated electron system involves the notable properties of colossal magnetoresistance, ferroelectric tunneling and spin transport, with the coupling of electron, spin and orbital degrees of freedom. Their rich functional behavior is of potential use for nanoelectronics and data storage. Particularly interesting are the mulitferroic materials, which exhibit simultaneously electric and magnetic ordering properties. Understanding the interface coupling mechanism of these two order parameters are critical to future development of high-performance spintronic devices. The goal of this dissertation is to elucidate the interfacial magnetoelectric (ME) coupling with optical characterization method -- magnetization-induced second-harmonic generation (MSHG), which is sensitive to the interface due to the broken spatial inversion symmetry. First, ME coupling at the interface of BaTiO3 (BTO)/La0.67Sr0.33MnO3 (LSMO) is observed by applying an external electric field. The voltage-dependent magnetic contrast reveals a sharp transition from ferromagnetic (FM) to antiferromagnetic (AFM) order occurring at positive voltage (applied to LSMO contact). This novel effect is attributed to interface ME coupling. Strain or ferroelectric (FE) polarization induced mechanisms do not play an important role in this system. A new mechanism is proposed -- minority spin injection -- to modulate the interface magnetization. The minority spin injection at the interface weakens the double-exchange coupling of nearby eg electrons, thereby weakening the FM ordering. Thus the dominant AFM superexchange coupling of localized t2g electrons causes the phase transition at positive voltage. The magnetic transition is shifted to higher voltage by reducing the carrier concentration of BTO. Second, a non-multiferroic heterostructure -- SrTiO3 (STO)/La0.5Ca0.5MnO3 (LCMO)/La0.67Sr0.33MnO3 (LSMO) -- is studied to elucidate further the interface ME effect. The magnetization transition is observed but shifted to negative voltage. The LSMO is pushed to higher hole doping level due to the STO layer which acts as a hole donating layer, while the LCMO interlayer at the medium doping level displays complicated CE-type AFM phase. Thus, a negative voltage is required to lower the hole doping level of LSMO to induce the FM phase. The magnetic contrast reappears at high positive voltage, indicating the occurrence of an A-type AFM phase, which is stable at high hole doping concentration. The results of this dissertation show that the interface magnetic phase of LSMO can be controlled by an applied electric field through modulation of the hole doping level.


Thin Films and Heterostructures for Oxide Electronics

Thin Films and Heterostructures for Oxide Electronics
Author: Satishchandra B. Ogale
Publisher: Springer Science & Business Media
Total Pages: 416
Release: 2005-11-21
Genre: Technology & Engineering
ISBN: 0387260897

Download Thin Films and Heterostructures for Oxide Electronics Book in PDF, ePub and Kindle

Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.


Multifunctional Oxide Heterostructures For Next-Generation Tunable RF/Microwave Electronics

Multifunctional Oxide Heterostructures For Next-Generation Tunable RF/Microwave Electronics
Author: Hyung Min Jeon
Publisher:
Total Pages: 76
Release: 2019
Genre: Electrical engineering
ISBN:

Download Multifunctional Oxide Heterostructures For Next-Generation Tunable RF/Microwave Electronics Book in PDF, ePub and Kindle

Recent advanced radio frequency (RF) microwave device demands for low power consumption, light weight, compact package, and high performance. To achieve the high performance, applying magnetic materials is becoming indispensable in many of those devices. Thus, the role of magnetism in those devices is important high-quality magnetic materials not only improves the performance of microwave devices but also opens opportunities in developing novel concepts of devices utilizing spin wave excitation, non-reciprocal wave propagation, and the electromagnetic coupling in multiferroic materials. Among all the others, manipulating magnetic properties in multiferroic material started a couple years ago. Multiferroic materials are a group of materials that exhibit both ferrimagnetic and ferroelectric properties. By controlling its magnetic property such as ferromagnetic resonance, the low loss and tunable RF/Microwave electronics can be generated. However, the multiferroics currently under investigation suffer severely from the weak magnetoelastic effect in part due to the poor crystallinity, and in part due to the inappropriate materials chosen. Thus, the fabrication of high-quality ferrite and discovery of the suitable ferrite are paramount to apply in multiferroic material. In this research, we report a high-quality Yttrium Iron Garnet thin film and an unique Aluminum alloyed Nickel Zink Ferrite thin film. The former exhibits an extremely low magnetic damping factor, and the later show a larger magnetostriction coefficient. The microstructures of these films were characterized using X-ray diffraction, Atomic force microscopy, and transmission electron microscope. and - the magnetic properties -were characterized by Ferromagnetic Resonance. Additionally, we have observed the inverse spin-hall effect between magnetic and metal layer and demonstrated non-reciprocal wave propagation in a 20nm thin YIG film.


MBE Growth of MgO Buffer Layer for Complex Oxide Heterostructures

MBE Growth of MgO Buffer Layer for Complex Oxide Heterostructures
Author: Swathi Vunnam
Publisher:
Total Pages: 116
Release: 2009
Genre: Thin films
ISBN:

Download MBE Growth of MgO Buffer Layer for Complex Oxide Heterostructures Book in PDF, ePub and Kindle

The integration of complex oxides on wide bandgap semiconductors is required for future generation of high frequency, high power, and robust devices. High quality oxide thin films can be integrated on silicon based semiconductors by the new oxide-MBE technology. However, the growth of multifunctional oxide heterostructure is not easy due to different properties of each oxide film. By using a buffer layer, it is possible to produce a desired epitaxial oxide layer on a particular substrate without damaging either the substrate or the overlayer. Magnesium oxide (MgO) is a large bandgap insulator. Having a rock salt structure, it is a good buffer layer for complex oxide overlayers. Substrate selection is very important because matching in lattice parameters and crystal structure influences the crystal growth of the thin film. Due to its hexagonal crystal structure, 6H-SiC is an appropriate substrate for the growth of epitaxial MgO thin film using a molecular beam epitaxy deposition technique. In this project, appropriate substrate preparation methods and MgO growth processes were investigated. In order to grow the thin films, MBE components were designed and ultra high vacuum (UHV) was achieved. Finally, growth of MgO thin film on a 6H-SiC substrate has been achieved.


Thin Film Metal-Oxides

Thin Film Metal-Oxides
Author: Shriram Ramanathan
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2009-12-03
Genre: Technology & Engineering
ISBN: 1441906649

Download Thin Film Metal-Oxides Book in PDF, ePub and Kindle

Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.


Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices
Author: Vijay B. Pawade
Publisher: CRC Press
Total Pages: 338
Release: 2020-05-21
Genre: Business & Economics
ISBN: 1000073165

Download Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices Book in PDF, ePub and Kindle

Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.


Multifunctional Oxide-Based Materials: From Synthesis to Application

Multifunctional Oxide-Based Materials: From Synthesis to Application
Author: Teofil Jesionowski
Publisher: MDPI
Total Pages: 204
Release: 2019-09-03
Genre: Science
ISBN: 3039213970

Download Multifunctional Oxide-Based Materials: From Synthesis to Application Book in PDF, ePub and Kindle

The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use