Multidisciplinary Design Optimization Supported By Knowledge Based Engineering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multidisciplinary Design Optimization Supported By Knowledge Based Engineering PDF full book. Access full book title Multidisciplinary Design Optimization Supported By Knowledge Based Engineering.

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering
Author: Jaroslaw Sobieszczanski-Sobieski
Publisher: John Wiley & Sons
Total Pages: 392
Release: 2017-05-08
Genre: Technology & Engineering
ISBN: 1118897099

Download Multidisciplinary Design Optimization Supported by Knowledge Based Engineering Book in PDF, ePub and Kindle

Multidisciplinary Design Optimization supported by Knowledge Based Engineering supports engineers confronting this daunting and new design paradigm. It describes methodology for conducting a system design in a systematic and rigorous manner that supports human creativity to optimize the design objective(s) subject to constraints and uncertainties. The material presented builds on decades of experience in Multidisciplinary Design Optimization (MDO) methods, progress in concurrent computing, and Knowledge Based Engineering (KBE) tools. Key features: Comprehensively covers MDO and is the only book to directly link this with KBE methods Provides a pathway through basic optimization methods to MDO methods Directly links design optimization methods to the massively concurrent computing technology Emphasizes real world engineering design practice in the application of optimization methods Multidisciplinary Design Optimization supported by Knowledge Based Engineering is a one-stop-shop guide to the state-of-the-art tools in the MDO and KBE disciplines for systems design engineers and managers. Graduate or post-graduate students can use it to support their design courses, and researchers or developers of computer-aided design methods will find it useful as a wide-ranging reference.


Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products

Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products
Author: Edris Safavi
Publisher: Linköping University Electronic Press
Total Pages: 68
Release: 2016-10-06
Genre:
ISBN: 9176857123

Download Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products Book in PDF, ePub and Kindle

MULTIDESCIPLINARY design optimization (MDO) has developed in theory andpractice during the last three decades with the aim of optimizing complexproducts as well as cutting costs and product development time. Despite thisdevelopment, the implementation of such a method in industry is still a challenge andmany complex products suffer time and cost overruns. Employing higher fidelity models (HFMs) in conceptual design, one of the early and most important phases in the design process, can play an important role in increasing the knowledge base regarding the concept under evaluation. However, design space in the presence of HFMs could significantly be expanded. MDO has proven to be an important tool for searching the design space and finding optimal solutions. This leads to a reduction in the number of design iterations later in the design process, with wiser and more robust decisions made early in the design process to rely on. In complex products, different systems from a multitude of engineering disciplines have to work tightly together. This stresses the importance of evolving various domain experts in the design process to improve the design from diverse engineering perspectives. Involving more engineers in the design process early on raises the challenges of collaboration, known to be an important barrier to MDO implementation in industry. Another barrier is the unavailability and lack of MDO experts in industry; those who understand the MDO process and know the implementation tasks involved. In an endeavor to address the mentioned implementation challenges, a novel collaborative multidisciplinary design optimization (CMDO) framework is defined in order to be applied in the conceptual design phase. CMDO provides a platform where many engineers team up to increase the likelihood of more accurate decisions being taken early on. The structured way to define the engineering responsibilities and tasks involved in MDO helps to facilitate the implementation process. It will be further elaborated that educating active engineers with MDO knowledge is an expensive and time-consuming process for industries. Therefore, a guideline for CMDO implementation in conceptual design is proposed in this thesis that can be easily followed by design engineers with limited prior knowledge in MDO. The performance of the framework is evaluated in a number of case studies, including applications such as aircraft design and the design of a tidal water power plant, and by engineers in industry and student groups in academia.


Multidisciplinary Design Optimization

Multidisciplinary Design Optimization
Author: Tommy Haynes
Publisher:
Total Pages: 256
Release: 2017-06-15
Genre: Technology & Engineering
ISBN: 9781632385284

Download Multidisciplinary Design Optimization Book in PDF, ePub and Kindle

Multidisciplinary Design Optimization is a rapidly growing field of study. It falls under the umbrella of engineering and focuses on solving design related problems with the help of optimization methods. The techniques are also helpful and useful in other fields like automobile design, electronics, computers, etc. This book aims to elaborately discuss the various problem solving techniques under the broader category of design optimization like gradient based methods, population based methods and gradient free methods, etc. As this field is emerging at a rapid pace, the contents of this book will help the readers understand the modern concepts and applications of the subject. From theories to research to practical applications, case studies related to all contemporary topics of relevance to the field of multidisciplinary design optimization have been included in this book.


Multidisciplinary Design Optimization

Multidisciplinary Design Optimization
Author: Natalia M. Alexandrov
Publisher: SIAM
Total Pages: 476
Release: 1997-01-01
Genre: Design
ISBN: 9780898713596

Download Multidisciplinary Design Optimization Book in PDF, ePub and Kindle

Multidisciplinary design optimization (MDO) has recently emerged as a field of research and practice that brings together many previously disjointed disciplines and tools of engineering and mathematics. MDO can be described as a technology, environment, or methodology for the design of complex, coupled engineering systems, such as aircraft, automobiles, and other mechanisms, the behavior of which is determined by interacting subsystems.


Engineering Design Optimization

Engineering Design Optimization
Author: Joaquim R. R. A. Martins
Publisher: Cambridge University Press
Total Pages: 653
Release: 2021-11-18
Genre: Mathematics
ISBN: 110898861X

Download Engineering Design Optimization Book in PDF, ePub and Kindle

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.


Advances in Structural Optimization

Advances in Structural Optimization
Author: J. Herskovits
Publisher: Springer Science & Business Media
Total Pages: 508
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9401104530

Download Advances in Structural Optimization Book in PDF, ePub and Kindle

Advances in Structural Optimization presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. For researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. A reference book for advanced undergraduate or graduate courses on structural optimization and optimum design.


Multidisciplinary Design Optimization in Computational Mechanics

Multidisciplinary Design Optimization in Computational Mechanics
Author: Piotr Breitkopf
Publisher: John Wiley & Sons
Total Pages: 403
Release: 2013-02-04
Genre: Technology & Engineering
ISBN: 1118600002

Download Multidisciplinary Design Optimization in Computational Mechanics Book in PDF, ePub and Kindle

This book provides a comprehensive introduction to the mathematical and algorithmic methods for the Multidisciplinary Design Optimization (MDO) of complex mechanical systems such as aircraft or car engines. We have focused on the presentation of strategies efficiently and economically managing the different levels of complexity in coupled disciplines (e.g. structure, fluid, thermal, acoustics, etc.), ranging from Reduced Order Models (ROM) to full-scale Finite Element (FE) or Finite Volume (FV) simulations. Particular focus is given to the uncertainty quantification and its impact on the robustness of the optimal designs. A large collection of examples from academia, software editing and industry should also help the reader to develop a practical insight on MDO methods.


Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems
Author: Gang Lei
Publisher: Springer
Total Pages: 241
Release: 2016-02-05
Genre: Technology & Engineering
ISBN: 3662492717

Download Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems Book in PDF, ePub and Kindle

This book presents various computationally efficient component- and system-level design optimization methods for advanced electrical machines and drive systems. Readers will discover novel design optimization concepts developed by the authors and other researchers in the last decade, including application-oriented, multi-disciplinary, multi-objective, multi-level, deterministic, and robust design optimization methods. A multi-disciplinary analysis includes various aspects of materials, electromagnetics, thermotics, mechanics, power electronics, applied mathematics, manufacturing technology, and quality control and management. This book will benefit both researchers and engineers in the field of motor and drive design and manufacturing, thus enabling the effective development of the high-quality production of innovative, high-performance drive systems for challenging applications, such as green energy systems and electric vehicles.


Design Optimization of Fluid Machinery

Design Optimization of Fluid Machinery
Author: Kwang-Yong Kim
Publisher: John Wiley & Sons
Total Pages: 406
Release: 2019-01-14
Genre: Science
ISBN: 111918830X

Download Design Optimization of Fluid Machinery Book in PDF, ePub and Kindle

Dieses aktuelle Referenzwerk behandelt numerische Optimierungsmethoden für Strömungsmaschinen und die wichtigsten industriellen Anwendungen. Grundlagen sind umfangreiche Forschung und Erfahrung der Autoren. Die logischen Zusammenhänge, um den Bereich der numerischen Strömungssimulation (CFD) zu verstehen, werden anhand der Grundlagen der Strömungsmechanik, von Strömungsmaschinen und ihrer Komponenten erläutert. Im Anschluss folgt eine Einführung in Methoden der Ein- und Mehrzieloptimierung, die automatische Optimierung, in Ersatzmodelle und Entwicklungsalgorithmen. Das Fachbuch schließt mit der ausführlichen Erklärung von Designansätzen und Anwendungen für Pumpen, Turbinen, Kompressoren und weiteren Systemen von Strömungsmaschinen. Der Nachdruck liegt hier bei Systemen für erneuerbare Energien. - Die Autoren sind führende Experten des Fachgebiets. - Ein handliches Fachbuch zu Optimierungsmethoden mittels numerischer Strömungssimulation bei Strömungsmaschinen. - Beschreibt wichtige Anwendungsbereiche in der Industrie und enthält Kapitel zu Systemen für erneuerbaren Energien. Design Optimization of Fluid Machinery ist ein wichtiger Leitfaden für Graduierte, Forscher und Ingenieure aus den Bereichen Strömungsmaschinen und zugehörige Optimierungsmethoden. Als Fachbuch mit allem Wissenswerten zu dem Thema richtet es sich an Studenten höherer Semester der Fachrichtungen Maschinenbau und verwandter Bereiche der Strömungssimulation und Luft-/Raumfahrttechnik.


Towards Design Automation for Additive Manufacturing

Towards Design Automation for Additive Manufacturing
Author: Anton Wiberg
Publisher: Linköping University Electronic Press
Total Pages: 53
Release: 2019-10-14
Genre:
ISBN: 9179299857

Download Towards Design Automation for Additive Manufacturing Book in PDF, ePub and Kindle

In recent decades, the development of computer-controlled manufacturing by adding materiallayer by layer, called Additive Manufacturing (AM), has developed at a rapid pace. The technologyadds possibilities to the manufacturing of geometries that are not possible, or at leastnot economically feasible, to manufacture by more conventional manufacturing methods. AMcomes with the idea that complexity is free, meaning that complex geometries are as expensiveto manufacture as simple geometries. This is partly true, but there remain several design rulesthat needs to be considered before manufacturing. The research field Design for Additive Manufacturing(DfAM) consists of research that aims to take advantage of the possibilities of AMwhile considering the limitations of the technique. Computer Aided technologies (CAx) is the name of the usage of methods and software thataim to support a digital product development process. CAx includes software and methodsfor design, the evaluation of designs, manufacturing support, and other things. The commongoal with all CAx disciplines is to achieve better products at a lower cost and with a shorterdevelopment time. The work presented in this thesis bridges DfAM with CAx with the aim of achieving designautomation for AM. The work reviews the current DfAM process and proposes a new integratedDfAM process that considers the functionality and manufacturing of components. Selectedparts of the proposed process are implemented in a case study in order to evaluate theproposed process. In addition, a tool that supports part of the design process is developed. The proposed design process implements Multidisciplinary Design Optimization (MDO) witha parametric CAD model that is evaluated from functional and manufacturing perspectives. Inthe implementation, a structural component is designed using the MDO framework, which includesComputer Aided Engineering (CAE) models for structural evaluation, the calculation ofweight, and how much support material that needs to be added during manufacturing. Thecomponent is optimized for the reduction of weight and minimization of support material,while the stress levels in the component are constrained. The developed tool uses methodsfor high level Parametric CAD modelling to simplify the creation of parametric CAD modelsbased on Topology Optimization (TO) results. The work concludes that the implementation of CAx technologies in the DfAM process enablesa more automated design process with less manual design iterations than traditional DfAM processes.It also discusses and presents directions for further research to achieve a fully automateddesign process for Additive Manufacturing.